Nuprl Lemma : fl-point
∀[T:Type]. ∀[eq:EqDecider(T)].
  Point(face-lattice(T;eq)) ≡ {ac:fset(fset(T + T))| 
                               (↑fset-antichain(union-deq(T;T;eq;eq);ac))
                               ∧ (∀a:fset(T + T). (a ∈ ac 
⇒ (∀z:T. (¬(inl z ∈ a ∧ inr z  ∈ a)))))} 
Proof
Definitions occuring in Statement : 
face-lattice: face-lattice(T;eq)
, 
lattice-point: Point(l)
, 
fset-antichain: fset-antichain(eq;ac)
, 
deq-fset: deq-fset(eq)
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
union-deq: union-deq(A;B;a;b)
, 
deq: EqDecider(T)
, 
assert: ↑b
, 
ext-eq: A ≡ B
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
inr: inr x 
, 
inl: inl x
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
face-lattice: face-lattice(T;eq)
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
face-lattice-constraints: face-lattice-constraints(x)
, 
f-subset: xs ⊆ ys
, 
or: P ∨ Q
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
free-dlwc-point, 
fset-member_wf, 
union-deq_wf, 
fset_wf, 
deq-fset_wf, 
assert_wf, 
fset-antichain_wf, 
all_wf, 
not_wf, 
fset-all_wf, 
fset-contains-none_wf, 
face-lattice-constraints_wf, 
deq_wf, 
fset-all-iff, 
assert-fset-contains-none, 
fset-pair_wf, 
member-fset-singleton, 
fset-member_witness, 
member-fset-pair, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
f-subset_wf, 
assert_witness, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
independent_pairFormation, 
lambdaEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
hypothesisEquality, 
productElimination, 
lambdaFormation, 
independent_functionElimination, 
productEquality, 
unionEquality, 
cumulativity, 
inlEquality, 
inrEquality, 
because_Cache, 
functionEquality, 
setEquality, 
independent_pairEquality, 
axiomEquality, 
universeEquality, 
independent_isectElimination, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
applyEquality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
inrFormation, 
hyp_replacement, 
applyLambdaEquality, 
inlFormation
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].
    Point(face-lattice(T;eq))  \mequiv{}  \{ac:fset(fset(T  +  T))| 
                                                              (\muparrow{}fset-antichain(union-deq(T;T;eq;eq);ac))
                                                              \mwedge{}  (\mforall{}a:fset(T  +  T).  (a  \mmember{}  ac  {}\mRightarrow{}  (\mforall{}z:T.  (\mneg{}(inl  z  \mmember{}  a  \mwedge{}  inr  z    \mmember{}  a)))))\} 
Date html generated:
2020_05_20-AM-08_51_08
Last ObjectModification:
2017_07_28-AM-09_15_50
Theory : lattices
Home
Index