Nuprl Lemma : cons_succ
∀[T:Type]
∀l:T List
∀[P:T ⟶ ℙ]
∀a,x:T.
(y = succ(x) in [a / l]
⇒ P[y]
⇒ ((P[hd(l)]) supposing (0 < ||l|| and (x = a ∈ T)) ∧ y = succ(x) in l
⇒ P[y] supposing ¬(x = a ∈ T)))
Proof
Definitions occuring in Statement :
l_succ: l_succ,
length: ||as||
,
hd: hd(l)
,
cons: [a / b]
,
list: T List
,
less_than: a < b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
not: ¬A
,
implies: P
⇒ Q
,
and: P ∧ Q
,
function: x:A ⟶ B[x]
,
natural_number: $n
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
l_succ: l_succ,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
and: P ∧ Q
,
cand: A c∧ B
,
uimplies: b supposing a
,
member: t ∈ T
,
prop: ℙ
,
not: ¬A
,
false: False
,
nat: ℕ
,
top: Top
,
ge: i ≥ j
,
decidable: Dec(P)
,
or: P ∨ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
less_than: a < b
,
squash: ↓T
,
uiff: uiff(P;Q)
,
so_apply: x[s]
,
subtype_rel: A ⊆r B
,
select: L[n]
,
cons: [a / b]
,
subtract: n - m
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
nil: []
,
it: ⋅
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
guard: {T}
,
iff: P
⇐⇒ Q
Lemmas referenced :
member-less_than,
length_wf,
less_than_wf,
select_wf,
length_of_cons_lemma,
istype-void,
nat_properties,
decidable__le,
full-omega-unsat,
intformand_wf,
intformnot_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
istype-int,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_wf,
decidable__lt,
intformless_wf,
itermAdd_wf,
int_formula_prop_less_lemma,
int_term_value_add_lemma,
nat_wf,
not_wf,
equal_wf,
cons_wf,
add-is-int-iff,
false_wf,
istype-universe,
list_wf,
list-cases,
length_of_nil_lemma,
istype-false,
product_subtype_list,
le_wf,
stuck-spread,
istype-base,
reduce_hd_cons_lemma,
select-cons-tl,
add-subtract-cancel,
select_cons_tl,
subtype_rel_self,
iff_weakening_equal
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation_alt,
lambdaFormation_alt,
cut,
introduction,
axiomEquality,
hypothesis,
thin,
rename,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
natural_numberEquality,
hypothesisEquality,
independent_isectElimination,
universeIsType,
equalityIsType1,
inhabitedIsType,
independent_pairFormation,
lambdaEquality_alt,
dependent_functionElimination,
voidElimination,
functionIsTypeImplies,
setElimination,
because_Cache,
isect_memberEquality_alt,
unionElimination,
approximateComputation,
independent_functionElimination,
dependent_pairFormation_alt,
int_eqEquality,
imageElimination,
productElimination,
addEquality,
functionIsType,
pointwiseFunctionality,
equalityTransitivity,
equalitySymmetry,
promote_hyp,
baseApply,
closedConclusion,
baseClosed,
applyEquality,
universeEquality,
dependent_set_memberEquality_alt,
hypothesis_subsumption,
instantiate
Latex:
\mforall{}[T:Type]
\mforall{}l:T List
\mforall{}[P:T {}\mrightarrow{} \mBbbP{}]
\mforall{}a,x:T.
(y = succ(x) in [a / l]
{}\mRightarrow{} P[y]
{}\mRightarrow{} ((P[hd(l)]) supposing (0 < ||l|| and (x = a)) \mwedge{} y = succ(x) in l{}\mRightarrow{} P[y] supposing \mneg{}(x = a\000C)))
Date html generated:
2019_10_15-AM-10_53_20
Last ObjectModification:
2018_10_09-AM-09_54_24
Theory : list!
Home
Index