Nuprl Lemma : mk-dp_wf

[self:DualPlanePrimitives]. ∀[sqs:∀x,y:Vec.  SqStable((x y))]. ∀[st:∀x,y:Vec.  Stable{(x ⊥ y)}].
[sor:∀x:Vec. ∀y:{y:Vec| (x y)} . ∀z:Vec.  ((z x) ∨ (z y))]. ∀[crs:∀a:Vec. ∀b:{b:Vec| (a b)} .
                                                                          (∃c:Vec [((a ⊥ c) ∧ (b ⊥ c))])].
[nt:∀a:Vec. (∃c:Vec [((a ⊥ c) ∧ (a c))])].
  (mk-dp(self;sqs;st;sor;crs;nt) ∈ DualPlaneStructure)


Proof




Definitions occuring in Statement :  mk-dp: mk-dp(p;sqs;st;sor;crs;nt) dual-plane-structure: DualPlaneStructure dp-perp: (x ⊥ y) dp-sep: (x y) dp-vec: Vec dual-plane-primitives: DualPlanePrimitives sq_stable: SqStable(P) stable: Stable{P} uall: [x:A]. B[x] all: x:A. B[x] sq_exists: x:A [B[x]] or: P ∨ Q and: P ∧ Q member: t ∈ T set: {x:A| B[x]} 
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mk-dp: mk-dp(p;sqs;st;sor;crs;nt) dual-plane-structure: DualPlaneStructure all: x:A. B[x] so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] sq_exists: x:A [B[x]] or: P ∨ Q record+: record+ record-update: r[x := v] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt subtype_rel: A ⊆B uiff: uiff(P;Q) uimplies: supposing a ifthenelse: if then else fi  sq_type: SQType(T) guard: {T} record-select: r.x dp-sep: (x y) dp-vec: Vec top: Top eq_atom: =a y bfalse: ff iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False dp-perp: (x ⊥ y) dual-plane-primitives: DualPlanePrimitives record: record(x.T[x])
Lemmas referenced :  dp-vec_wf sq_exists_wf dp-perp_wf dp-sep_wf stable_wf sq_stable_wf dual-plane-primitives_wf eq_atom_wf uiff_transitivity equal-wf-base bool_wf atom_subtype_base assert_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq rec_select_update_lemma istype-void iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot istype-atom subtype_rel_self subtype_rel_universe1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry functionIsType universeIsType extract_by_obid isectElimination thin hypothesisEquality lambdaEquality_alt productEquality inhabitedIsType isect_memberEquality_alt because_Cache setIsType setElimination rename unionIsType dependentIntersection_memberEquality functionExtensionality_alt tokenEquality lambdaFormation_alt unionElimination equalityElimination baseApply closedConclusion baseClosed applyEquality atomEquality independent_functionElimination productElimination independent_isectElimination instantiate cumulativity dependent_functionElimination voidElimination independent_pairFormation equalityIsType4 equalityIsType1 functionExtensionality dependentIntersectionElimination dependentIntersectionEqElimination universeEquality functionEquality

Latex:
\mforall{}[self:DualPlanePrimitives].  \mforall{}[sqs:\mforall{}x,y:Vec.    SqStable((x  \#  y))].  \mforall{}[st:\mforall{}x,y:Vec.    Stable\{(x  \mbot{}  y)\}].
\mforall{}[sor:\mforall{}x:Vec.  \mforall{}y:\{y:Vec|  (x  \#  y)\}  .  \mforall{}z:Vec.    ((z  \#  x)  \mvee{}  (z  \#  y))].  \mforall{}[crs:\mforall{}a:Vec.  \mforall{}b:\{b:Vec|  (a  \#  b)\}\000C  .
                                                                                                                                                    (\mexists{}c:Vec  [((a  \mbot{}  c)
                                                                                                                                                                    \mwedge{}  (b  \mbot{}  c))])].
\mforall{}[nt:\mforall{}a:Vec.  (\mexists{}c:Vec  [((a  \mbot{}  c)  \mwedge{}  (a  \#  c))])].
    (mk-dp(self;sqs;st;sor;crs;nt)  \mmember{}  DualPlaneStructure)



Date html generated: 2019_10_16-AM-11_29_32
Last ObjectModification: 2018_10_10-PM-02_14_49

Theory : matrices


Home Index