Nuprl Lemma : A-shift-upto-spec_wf

[Val:Type]. ∀[n:ℕ]. ∀[AType:array{i:l}(Val;n)]. ∀[prog:A-map Unit]. ∀[j:ℕn].
  (A-shift-upto-spec(AType; Val; n; prog; j) ∈ ℙ)


Proof




Definitions occuring in Statement :  A-shift-upto-spec: A-shift-upto-spec(AType; Val; n; prog; j) A-map: A-map array-model: array-model(AType) array: array{i:l}(Val;n) int_seg: {i..j-} nat: uall: [x:A]. B[x] prop: unit: Unit member: t ∈ T apply: a natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T A-shift-upto-spec: A-shift-upto-spec(AType; Val; n; prog; j) so_lambda: λ2x.t[x] nat: int_seg: {i..j-} all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a lelt: i ≤ j < k guard: {T} ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top subtract: m prop: bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b so_apply: x[s]
Lemmas referenced :  all_wf Arr_wf int_seg_wf lt_int_wf subtract_wf bool_wf eqtt_to_assert assert_of_lt_int equal_wf A-post-val_wf A-pre-val_wf add-member-int_seg2 int_seg_properties nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermSubtract_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma lelt_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf A-map_wf unit_wf2 array_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis lambdaEquality natural_numberEquality setElimination rename because_Cache lambdaFormation unionElimination equalityElimination productElimination independent_isectElimination dependent_set_memberEquality independent_pairFormation dependent_functionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll equalityTransitivity equalitySymmetry promote_hyp instantiate independent_functionElimination axiomEquality applyEquality universeEquality

Latex:
\mforall{}[Val:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[AType:array\{i:l\}(Val;n)].  \mforall{}[prog:A-map  Unit].  \mforall{}[j:\mBbbN{}n].
    (A-shift-upto-spec(AType;  Val;  n;  prog;  j)  \mmember{}  \mBbbP{})



Date html generated: 2017_10_01-AM-08_44_49
Last ObjectModification: 2017_07_26-PM-04_30_21

Theory : monads


Home Index