Nuprl Lemma : member-concat-map

[T,S:Type].  ∀f:T ⟶ (S List). ∀L:T List. ∀x:S.  ((x ∈ concat(map(f;L))) ⇐⇒ (∃t∈L. (x ∈ t)))


Proof




Definitions occuring in Statement :  l_exists: (∃x∈L. P[x]) l_member: (x ∈ l) concat: concat(ll) map: map(f;as) list: List uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: so_apply: x[s] implies:  Q top: Top concat: concat(ll) iff: ⇐⇒ Q and: P ∧ Q uimplies: supposing a not: ¬A false: False rev_implies:  Q subtype_rel: A ⊆B l_exists: (∃x∈L. P[x]) exists: x:A. B[x] select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] guard: {T} int_seg: {i..j-} lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q
Lemmas referenced :  member_append l_exists_cons int_formula_prop_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma intformle_wf itermConstant_wf itermVar_wf intformless_wf intformand_wf satisfiable-full-omega-tt int_seg_properties length_of_nil_lemma base_wf stuck-spread cons_wf append_wf concat-cons map_cons_lemma l_exists_wf_nil btrue_neq_bfalse nil_wf member-implies-null-eq-bfalse btrue_wf null_nil_lemma reduce_nil_lemma map_nil_lemma l_exists_wf list_wf map_wf concat_wf l_member_wf iff_wf all_wf list_induction
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality hypothesis applyEquality setElimination rename setEquality independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation independent_isectElimination equalityTransitivity equalitySymmetry because_Cache functionEquality universeEquality productElimination baseClosed natural_numberEquality dependent_pairFormation int_eqEquality intEquality computeAll unionElimination inlFormation inrFormation

Latex:
\mforall{}[T,S:Type].    \mforall{}f:T  {}\mrightarrow{}  (S  List).  \mforall{}L:T  List.  \mforall{}x:S.    ((x  \mmember{}  concat(map(f;L)))  \mLeftarrow{}{}\mRightarrow{}  (\mexists{}t\mmember{}L.  (x  \mmember{}  f  t)))



Date html generated: 2016_05_15-PM-02_17_08
Last ObjectModification: 2016_01_15-PM-00_18_08

Theory : monads


Home Index