Nuprl Lemma : member-concat-map
∀[T,S:Type].  ∀f:T ⟶ (S List). ∀L:T List. ∀x:S.  ((x ∈ concat(map(f;L))) 
⇐⇒ (∃t∈L. (x ∈ f t)))
Proof
Definitions occuring in Statement : 
l_exists: (∃x∈L. P[x])
, 
l_member: (x ∈ l)
, 
concat: concat(ll)
, 
map: map(f;as)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
top: Top
, 
concat: concat(ll)
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
false: False
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
l_exists: (∃x∈L. P[x])
, 
exists: ∃x:A. B[x]
, 
select: L[n]
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
or: P ∨ Q
Lemmas referenced : 
member_append, 
l_exists_cons, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
int_seg_properties, 
length_of_nil_lemma, 
base_wf, 
stuck-spread, 
cons_wf, 
append_wf, 
concat-cons, 
map_cons_lemma, 
l_exists_wf_nil, 
btrue_neq_bfalse, 
nil_wf, 
member-implies-null-eq-bfalse, 
btrue_wf, 
null_nil_lemma, 
reduce_nil_lemma, 
map_nil_lemma, 
l_exists_wf, 
list_wf, 
map_wf, 
concat_wf, 
l_member_wf, 
iff_wf, 
all_wf, 
list_induction
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
applyEquality, 
setElimination, 
rename, 
setEquality, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
functionEquality, 
universeEquality, 
productElimination, 
baseClosed, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll, 
unionElimination, 
inlFormation, 
inrFormation
Latex:
\mforall{}[T,S:Type].    \mforall{}f:T  {}\mrightarrow{}  (S  List).  \mforall{}L:T  List.  \mforall{}x:S.    ((x  \mmember{}  concat(map(f;L)))  \mLeftarrow{}{}\mRightarrow{}  (\mexists{}t\mmember{}L.  (x  \mmember{}  f  t)))
Date html generated:
2016_05_15-PM-02_17_08
Last ObjectModification:
2016_01_15-PM-00_18_08
Theory : monads
Home
Index