Nuprl Lemma : fps-deriv-commutes

[X:Type]. ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[f,g:PowerSeries(X;r)]. ∀[x,y:X].  (ddf/dx/dy ddf/dy/dx ∈ PowerSeries(X;r))


Proof




Definitions occuring in Statement :  fps-deriv: df/dx power-series: PowerSeries(X;r) deq: EqDecider(T) uall: [x:A]. B[x] universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] fps-deriv: df/dx fps-coeff: f[b] crng: CRng rng: Rng subtype_rel: A ⊆B nat: power-series: PowerSeries(X;r) true: True infix_ap: y squash: T prop: guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q deq: EqDecider(T) bool: 𝔹 unit: Unit it: btrue: tt eqof: eqof(d) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False not: ¬A top: Top
Lemmas referenced :  fps-ext fps-deriv_wf bag_wf rng_car_wf int-to-ring_wf bag-count_wf nat_wf cons-bag_wf rng_times_wf equal_wf squash_wf true_wf rng_times_assoc subtype_rel_self iff_weakening_equal ifthenelse_wf bool_wf eqtt_to_assert safe-assert-deq and_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot crng_times_comm rng_wf add_functionality_wrt_eq bag-count-cons bag-append-assoc2 cons-bag-as-append bag-append-assoc bag-append-assoc-comm single-bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality hypothesis productElimination independent_isectElimination lambdaFormation sqequalRule isect_memberEquality axiomEquality setElimination rename addEquality applyEquality lambdaEquality natural_numberEquality imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed instantiate independent_functionElimination intEquality unionElimination equalityElimination dependent_set_memberEquality independent_pairFormation applyLambdaEquality dependent_pairFormation promote_hyp dependent_functionElimination cumulativity voidElimination universeEquality voidEquality

Latex:
\mforall{}[X:Type].  \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[f,g:PowerSeries(X;r)].  \mforall{}[x,y:X].
    (ddf/dx/dy  =  ddf/dy/dx)



Date html generated: 2018_05_21-PM-10_17_20
Last ObjectModification: 2018_05_19-PM-04_19_12

Theory : power!series


Home Index