Nuprl Lemma : qdot-linear
∀[as,bs,cs:ℚ List].
  qdot(as;qv-add(bs;cs)) = (qdot(as;bs) + qdot(as;cs)) ∈ ℚ 
  supposing (dimension(as) = dimension(bs) ∈ ℤ) ∧ (dimension(as) = dimension(cs) ∈ ℤ)
Proof
Definitions occuring in Statement : 
qv-add: qv-add(as;bs)
, 
qv-dim: dimension(as)
, 
qdot: qdot(as;bs)
, 
qadd: r + s
, 
rationals: ℚ
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
qdot: qdot(as;bs)
, 
squash: ↓T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
qv-dim: dimension(as)
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
nat: ℕ
, 
ge: i ≥ j 
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
rationals_wf, 
qsum_wf, 
qmul_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
qv-add_wf, 
dim-qv-add, 
subtype_rel_list, 
top_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
int_seg_wf, 
sum_plus_q, 
qv-dim_wf, 
nat_properties, 
subtype_rel_self, 
iff_weakening_equal, 
select-qv-add, 
le_wf, 
less_than_wf, 
set_subtype_base, 
int_subtype_base, 
list_wf, 
qadd_wf, 
qmul_over_plus_qrng
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
applyEquality, 
lambdaEquality_alt, 
imageElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeIsType, 
inhabitedIsType, 
universeEquality, 
natural_numberEquality, 
sqequalRule, 
because_Cache, 
setElimination, 
rename, 
independent_isectElimination, 
dependent_functionElimination, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
functionIsType, 
dependent_set_memberEquality_alt, 
productIsType, 
equalityIsType4, 
intEquality, 
axiomEquality
Latex:
\mforall{}[as,bs,cs:\mBbbQ{}  List].
    qdot(as;qv-add(bs;cs))  =  (qdot(as;bs)  +  qdot(as;cs)) 
    supposing  (dimension(as)  =  dimension(bs))  \mwedge{}  (dimension(as)  =  dimension(cs))
Date html generated:
2019_10_16-PM-00_34_00
Last ObjectModification:
2018_10_10-AM-11_04_56
Theory : rationals
Home
Index