Nuprl Lemma : qdot-linear

[as,bs,cs:ℚ List].
  qdot(as;qv-add(bs;cs)) (qdot(as;bs) qdot(as;cs)) ∈ ℚ 
  supposing (dimension(as) dimension(bs) ∈ ℤ) ∧ (dimension(as) dimension(cs) ∈ ℤ)


Proof




Definitions occuring in Statement :  qv-add: qv-add(as;bs) qv-dim: dimension(as) qdot: qdot(as;bs) qadd: s rationals: list: List uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q qdot: qdot(as;bs) squash: T prop: so_lambda: λ2x.t[x] int_seg: {i..j-} guard: {T} lelt: i ≤ j < k all: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top qv-dim: dimension(as) subtype_rel: A ⊆B so_apply: x[s] nat: ge: i ≥  true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  equal_wf squash_wf true_wf istype-universe rationals_wf qsum_wf qmul_wf select_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma qv-add_wf dim-qv-add subtype_rel_list top_wf intformeq_wf int_formula_prop_eq_lemma int_seg_wf sum_plus_q qv-dim_wf nat_properties subtype_rel_self iff_weakening_equal select-qv-add le_wf less_than_wf set_subtype_base int_subtype_base list_wf qadd_wf qmul_over_plus_qrng
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution productElimination thin applyEquality lambdaEquality_alt imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeIsType inhabitedIsType universeEquality natural_numberEquality sqequalRule because_Cache setElimination rename independent_isectElimination dependent_functionElimination unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation applyLambdaEquality imageMemberEquality baseClosed instantiate functionIsType dependent_set_memberEquality_alt productIsType equalityIsType4 intEquality axiomEquality

Latex:
\mforall{}[as,bs,cs:\mBbbQ{}  List].
    qdot(as;qv-add(bs;cs))  =  (qdot(as;bs)  +  qdot(as;cs)) 
    supposing  (dimension(as)  =  dimension(bs))  \mwedge{}  (dimension(as)  =  dimension(cs))



Date html generated: 2019_10_16-PM-00_34_00
Last ObjectModification: 2018_10_10-AM-11_04_56

Theory : rationals


Home Index