Nuprl Lemma : select-qv-add

[as,bs:Top List].  ∀[i:ℕdimension(as)]. (qv-add(as;bs)[i] as[i] bs[i]) supposing dimension(as) dimension(bs) ∈ ℤ


Proof




Definitions occuring in Statement :  qv-add: qv-add(as;bs) qv-dim: dimension(as) qadd: s select: L[n] list: List int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] top: Top natural_number: $n int: sqequal: t equal: t ∈ T
Definitions unfolded in proof :  qv-dim: dimension(as) uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q qv-add: qv-add(as;bs) select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] ifthenelse: if then else fi  btrue: tt int_seg: {i..j-} lelt: i ≤ j < k cons: [a b] colength: colength(L) decidable: Dec(P) so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) bfalse: ff uiff: uiff(P;Q)
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf int_seg_wf length_wf top_wf equal_wf list_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases length_of_nil_lemma null_nil_lemma reduce_tl_nil_lemma stuck-spread base_wf int_seg_properties equal-wf-base-T product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int length_of_cons_lemma null_cons_lemma reduce_hd_cons_lemma reduce_tl_cons_lemma add-is-int-iff false_wf decidable__lt lelt_wf select-cons-tl
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination sqequalAxiom equalityTransitivity equalitySymmetry applyEquality because_Cache unionElimination baseClosed productElimination promote_hyp hypothesis_subsumption applyLambdaEquality dependent_set_memberEquality addEquality instantiate cumulativity imageElimination pointwiseFunctionality baseApply closedConclusion

Latex:
\mforall{}[as,bs:Top  List].
    \mforall{}[i:\mBbbN{}dimension(as)].  (qv-add(as;bs)[i]  \msim{}  as[i]  +  bs[i])  supposing  dimension(as)  =  dimension(bs)



Date html generated: 2018_05_22-AM-00_20_02
Last ObjectModification: 2017_07_26-PM-06_54_36

Theory : rationals


Home Index