Nuprl Lemma : bs_tree_insert_wf
∀[E:Type]. ∀[cmp:comparison(E)]. ∀[x:E]. ∀[tr:ordered_bs_tree(E;cmp)].
  (bs_tree_insert(cmp;x;tr) ∈ ordered_bs_tree(E;cmp))
Proof
Definitions occuring in Statement : 
bs_tree_insert: bs_tree_insert(cmp;x;tr), 
ordered_bs_tree: ordered_bs_tree(E;cmp), 
comparison: comparison(T), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
ordered_bs_tree: ordered_bs_tree(E;cmp), 
all: ∀x:A. B[x], 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
prop: ℙ, 
so_apply: x[s], 
bs_tree_insert: bs_tree_insert(cmp;x;tr), 
bst_null: bst_null(), 
bs_tree_ind: bs_tree_ind, 
bs_tree_ordered: bs_tree_ordered(E;cmp;tr), 
bst_leaf: bst_leaf(value), 
true: True, 
has-value: (a)↓, 
uimplies: b supposing a, 
comparison: comparison(T), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
less_than: a < b, 
less_than': less_than'(a;b), 
top: Top, 
squash: ↓T, 
not: ¬A, 
false: False, 
bst_node: bst_node(left;value;right), 
member_bs_tree: x ∈ tr, 
cand: A c∧ B, 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
subtype_rel: A ⊆r B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced : 
ordered_bs_tree_wf, 
comparison_wf, 
bs_tree_insert_wf1, 
bs_tree-induction, 
bs_tree_ordered_wf, 
bs_tree_wf, 
bst_null_wf, 
value-type-has-value, 
int-value-type, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
top_wf, 
less_than_wf, 
and_wf, 
equal_wf, 
false_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
bst_leaf_wf, 
member_bs_tree_wf, 
bst_node_wf, 
squash_wf, 
true_wf, 
comparison-anti, 
iff_weakening_equal, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermMinus_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_minus_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
member_bs_tree_insert, 
minus-is-int-iff, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
dependent_functionElimination, 
universeEquality, 
lambdaEquality, 
functionEquality, 
independent_functionElimination, 
lambdaFormation, 
natural_numberEquality, 
callbyvalueReduce, 
intEquality, 
independent_isectElimination, 
applyEquality, 
unionElimination, 
equalityElimination, 
productElimination, 
lessCases, 
sqequalAxiom, 
independent_pairFormation, 
voidElimination, 
voidEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
hyp_replacement, 
applyLambdaEquality, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
minusEquality, 
int_eqEquality, 
computeAll, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
functionExtensionality
Latex:
\mforall{}[E:Type].  \mforall{}[cmp:comparison(E)].  \mforall{}[x:E].  \mforall{}[tr:ordered\_bs\_tree(E;cmp)].
    (bs\_tree\_insert(cmp;x;tr)  \mmember{}  ordered\_bs\_tree(E;cmp))
Date html generated:
2017_10_01-AM-08_31_15
Last ObjectModification:
2017_07_26-PM-04_25_00
Theory : tree_1
Home
Index