Nuprl Lemma : cbva_seq-list-case1
∀[F,G1,G2,L1,L2,a:Top]. ∀[m1,m2:ℕ].
(cbva_seq(λn.if (n) < (m1)
then L1 a n
else mk_lambdas_fun(λg.if n - m1=m2
then mk_lambdas_fun(λg1.((G1 g) + (G2 g1));m2)
else (L2 a (n - m1));m1); F; (m1 + m2) + 1)
~ cbva_seq(λn.if (n) < (m1)
then L1 a n
else if (n) < (m1 + m2)
then mk_lambdas(L2 a (n - m1);m1)
else mk_lambdas_fun(λg1.mk_lambdas_fun(λg2.((G1 g1) + (G2 g2));m2);m1); F; (m1 + m2) + 1))
Proof
Definitions occuring in Statement :
mk_lambdas: mk_lambdas(F;m)
,
mk_lambdas_fun: mk_lambdas_fun(F;m)
,
cbva_seq: cbva_seq(L; F; m)
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
top: Top
,
less: if (a) < (b) then c else d
,
int_eq: if a=b then c else d
,
apply: f a
,
lambda: λx.A[x]
,
subtract: n - m
,
add: n + m
,
natural_number: $n
,
sqequal: s ~ t
Definitions unfolded in proof :
cbva_seq: cbva_seq(L; F; m)
,
mk_applies: mk_applies(F;G;m)
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
top: Top
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
ge: i ≥ j
,
decidable: Dec(P)
,
or: P ∨ Q
,
uimplies: b supposing a
,
not: ¬A
,
implies: P
⇒ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
and: P ∧ Q
,
prop: ℙ
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
sq_type: SQType(T)
,
guard: {T}
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
bnot: ¬bb
,
assert: ↑b
,
rev_implies: P
⇐ Q
,
iff: P
⇐⇒ Q
,
lt_int: i <z j
,
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
,
so_apply: x[s1;s2;s3;s4]
,
has-value: (a)↓
,
less_than: a < b
,
true: True
,
squash: ↓T
,
so_apply: x[s1;s2]
Lemmas referenced :
primrec0_lemma,
istype-void,
nat_properties,
decidable__le,
full-omega-unsat,
intformand_wf,
intformnot_wf,
intformle_wf,
itermConstant_wf,
itermAdd_wf,
itermVar_wf,
istype-int,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_add_lemma,
int_term_value_var_lemma,
int_formula_prop_wf,
le_wf,
istype-false,
decidable__lt,
intformless_wf,
int_formula_prop_less_lemma,
less_than_wf,
add-subtract-cancel,
subtype_base_sq,
int_subtype_base,
decidable__equal_int,
intformeq_wf,
itermSubtract_wf,
int_formula_prop_eq_lemma,
int_term_value_subtract_lemma,
lt_int_wf,
eqtt_to_assert,
assert_of_lt_int,
eqff_to_assert,
set_subtype_base,
bool_cases_sqequal,
bool_wf,
bool_subtype_base,
assert-bnot,
iff_weakening_uiff,
assert_wf,
nat_wf,
istype-top,
callbyvalueall_seq-decomp-last,
less_as_ite,
callbyvalueall_seq-fun2,
lifting-strict-less,
strict4-decide,
has-value_wf_base,
is-exception_wf,
callbyvalueall_seq-fun4,
mk_lambdas_as_lambdas_fun
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
sqequalRule,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
isect_memberEquality_alt,
voidElimination,
hypothesis,
hypothesisEquality,
dependent_set_memberEquality_alt,
addEquality,
setElimination,
rename,
natural_numberEquality,
isectElimination,
unionElimination,
independent_isectElimination,
approximateComputation,
independent_functionElimination,
dependent_pairFormation_alt,
lambdaEquality_alt,
int_eqEquality,
independent_pairFormation,
universeIsType,
lambdaFormation_alt,
because_Cache,
productIsType,
instantiate,
cumulativity,
intEquality,
equalityTransitivity,
equalitySymmetry,
inhabitedIsType,
equalityElimination,
productElimination,
equalityIsType2,
baseApply,
closedConclusion,
baseClosed,
applyEquality,
promote_hyp,
int_eqReduceTrueSq,
equalityIsType1,
isect_memberFormation_alt,
axiomSqEquality,
sqequalSqle,
divergentSqle,
callbyvalueLess,
lessCases,
imageMemberEquality,
imageElimination,
sqleReflexivity,
lessExceptionCases,
axiomSqleEquality,
exceptionSqequal,
exceptionLess
Latex:
\mforall{}[F,G1,G2,L1,L2,a:Top]. \mforall{}[m1,m2:\mBbbN{}].
(cbva\_seq(\mlambda{}n.if (n) < (m1)
then L1 a n
else mk\_lambdas\_fun(\mlambda{}g.if n - m1=m2
then mk\_lambdas\_fun(\mlambda{}g1.((G1 g) + (G2 g1));m2)
else (L2 a (n - m1));m1); F; (m1 + m2) + 1)
\msim{} cbva\_seq(\mlambda{}n.if (n) < (m1)
then L1 a n
else if (n) < (m1 + m2)
then mk\_lambdas(L2 a (n - m1);m1)
else mk\_lambdas\_fun(\mlambda{}g1.mk\_lambdas\_fun(\mlambda{}g2.((G1 g1) + (G2 g2));m2);m1);
F; (m1 + m2) + 1))
Date html generated:
2019_10_15-AM-10_58_50
Last ObjectModification:
2018_10_11-PM-09_50_58
Theory : untyped!computation
Home
Index