Nuprl Lemma : callbyvalueall_seq-decomp-last

[L,K,F:Top]. ∀[m:ℕ]. ∀[n:ℕm].
  (callbyvalueall_seq(L;λf.mk_applies(f;K;n);F;n;m) callbyvalueall_seq(L;λf.mk_applies(f;K;n);λg.let x ⟵ 
                                                                                                            (L (m 1))
                                                                                                   in f.(g x));n
                                                                        ;m 1))


Proof




Definitions occuring in Statement :  mk_applies: mk_applies(F;G;m) callbyvalueall_seq: callbyvalueall_seq(L;G;F;n;m) int_seg: {i..j-} nat: callbyvalueall: callbyvalueall uall: [x:A]. B[x] top: Top apply: a lambda: λx.A[x] subtract: m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q exists: x:A. B[x] ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top prop: sq_type: SQType(T) guard: {T} callbyvalueall_seq: callbyvalueall_seq(L;G;F;n;m) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b nat_plus: + le: A ≤ B iff: ⇐⇒ Q rev_implies:  Q subtract: m subtype_rel: A ⊆B less_than': less_than'(a;b) true: True
Lemmas referenced :  int_seg_properties subtract_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf itermAdd_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf decidable__equal_int intformeq_wf int_formula_prop_eq_lemma equal_wf subtype_base_sq int_subtype_base add-subtract-cancel ge_wf less_than_wf int_seg_wf nat_wf top_wf add-zero le_int_wf bool_wf eqtt_to_assert assert_of_le_int eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot decidable__lt false_wf not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates le-add-cancel eq_int_wf lelt_wf assert_wf bnot_wf not_wf equal-wf-base mk_applies_unroll bool_cases assert_of_eq_int iff_transitivity iff_weakening_uiff assert_of_bnot mk_applies_fun
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin natural_numberEquality setElimination rename because_Cache hypothesis hypothesisEquality productElimination dependent_pairFormation dependent_set_memberEquality addEquality dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation instantiate cumulativity equalityTransitivity equalitySymmetry intWeakElimination lambdaFormation sqequalAxiom isect_memberFormation equalityElimination promote_hyp applyEquality minusEquality baseApply closedConclusion baseClosed impliesFunctionality

Latex:
\mforall{}[L,K,F:Top].  \mforall{}[m:\mBbbN{}].  \mforall{}[n:\mBbbN{}m].
    (callbyvalueall\_seq(L;\mlambda{}f.mk\_applies(f;K;n);F;n;m) 
    \msim{}  callbyvalueall\_seq(L;\mlambda{}f.mk\_applies(f;K;n);\mlambda{}g.let  x  \mleftarrow{}{}  g  (L  (m  -  1))
                                                                                                  in  F  (\mlambda{}f.(g  f  x));n;m  -  1))



Date html generated: 2018_05_21-PM-06_22_54
Last ObjectModification: 2018_05_19-PM-05_30_45

Theory : untyped!computation


Home Index