Nuprl Lemma : mk_applies_fun2

[F,K,v:Top]. ∀[p,n:ℕ]. ∀[m:ℕ1].
  (mk_applies(F;λk.if (p =z n) then else (p k) fi ;m) mk_applies(F;λi.(K (p i));m))


Proof




Definitions occuring in Statement :  mk_applies: mk_applies(F;G;m) int_seg: {i..j-} nat: ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] top: Top apply: a lambda: λx.A[x] add: m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q subtype_rel: A ⊆B prop: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top mk_applies: mk_applies(F;G;m) decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b
Lemmas referenced :  int_seg_properties le_wf int_seg_wf nat_wf top_wf nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf primrec0_lemma decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma decidable__lt itermAdd_wf int_term_value_add_lemma lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot eq_int_wf assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma neg_assert_of_eq_int primrec-unroll
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin natural_numberEquality addEquality setElimination rename because_Cache hypothesis hypothesisEquality productElimination hypothesis_subsumption lambdaEquality dependent_set_memberEquality isect_memberFormation sqequalAxiom sqequalRule isect_memberEquality intWeakElimination lambdaFormation independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality intEquality dependent_functionElimination voidElimination voidEquality independent_pairFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity

Latex:
\mforall{}[F,K,v:Top].  \mforall{}[p,n:\mBbbN{}].  \mforall{}[m:\mBbbN{}n  +  1].
    (mk\_applies(F;\mlambda{}k.if  (p  +  k  =\msubz{}  p  +  n)  then  v  else  K  (p  +  k)  fi  ;m) 
    \msim{}  mk\_applies(F;\mlambda{}i.(K  (p  +  i));m))



Date html generated: 2018_05_21-PM-06_21_44
Last ObjectModification: 2018_05_19-PM-05_27_53

Theory : untyped!computation


Home Index