Nuprl Lemma : mk_applies_fun2
∀[F,K,v:Top]. ∀[p,n:ℕ]. ∀[m:ℕn + 1].
  (mk_applies(F;λk.if (p + k =z p + n) then v else K (p + k) fi m) ~ mk_applies(F;λi.(K (p + i));m))
Proof
Definitions occuring in Statement : 
mk_applies: mk_applies(F;G;m), 
int_seg: {i..j-}, 
nat: ℕ, 
ifthenelse: if b then t else f fi , 
eq_int: (i =z j), 
uall: ∀[x:A]. B[x], 
top: Top, 
apply: f a, 
lambda: λx.A[x], 
add: n + m, 
natural_number: $n, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
all: ∀x:A. B[x], 
top: Top, 
mk_applies: mk_applies(F;G;m), 
decidable: Dec(P), 
or: P ∨ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b
Lemmas referenced : 
int_seg_properties, 
le_wf, 
int_seg_wf, 
nat_wf, 
top_wf, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
primrec0_lemma, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
decidable__lt, 
itermAdd_wf, 
int_term_value_add_lemma, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
eq_int_wf, 
assert_of_eq_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
neg_assert_of_eq_int, 
primrec-unroll
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
natural_numberEquality, 
addEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
productElimination, 
hypothesis_subsumption, 
lambdaEquality, 
dependent_set_memberEquality, 
isect_memberFormation, 
sqequalAxiom, 
sqequalRule, 
isect_memberEquality, 
intWeakElimination, 
lambdaFormation, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
instantiate, 
cumulativity
Latex:
\mforall{}[F,K,v:Top].  \mforall{}[p,n:\mBbbN{}].  \mforall{}[m:\mBbbN{}n  +  1].
    (mk\_applies(F;\mlambda{}k.if  (p  +  k  =\msubz{}  p  +  n)  then  v  else  K  (p  +  k)  fi  ;m) 
    \msim{}  mk\_applies(F;\mlambda{}i.(K  (p  +  i));m))
Date html generated:
2018_05_21-PM-06_21_44
Last ObjectModification:
2018_05_19-PM-05_27_53
Theory : untyped!computation
Home
Index