Nuprl Lemma : mk_lambdas-sqequal-n2
∀[F1,F2:Base].  ∀n,m:ℕ.  (((m ≤ n) ⇒ (F1 ~n - m F2)) ⇒ (mk_lambdas(F1;m) ~n mk_lambdas(F2;m)))
Proof
Definitions occuring in Statement : 
mk_lambdas: mk_lambdas(F;m), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
le: A ≤ B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
subtract: n - m, 
base: Base, 
sqequal_n: s ~n t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
nat: ℕ, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top, 
prop: ℙ, 
sq_type: SQType(T), 
guard: {T}, 
mk_lambdas: mk_lambdas(F;m), 
and: P ∧ Q, 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
bnot: ¬bb, 
assert: ↑b, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
subtype_base_sq, 
int_subtype_base, 
nat_properties, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermSubtract_wf, 
itermVar_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
primrec0_lemma, 
decidable__le, 
intformand_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
le_wf, 
sqequal_n_wf, 
subtract_wf, 
all_wf, 
nat_wf, 
set_wf, 
less_than_wf, 
primrec-wf2, 
set_subtype_base, 
base_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
intformless_wf, 
int_formula_prop_less_lemma, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
decidable__lt, 
primrec-unroll
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
hypothesis, 
hypothesisEquality, 
setElimination, 
rename, 
dependent_functionElimination, 
because_Cache, 
unionElimination, 
natural_numberEquality, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
computeAll, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
independent_pairFormation, 
functionEquality, 
dependent_set_memberEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
equalityElimination, 
productElimination, 
promote_hyp, 
sqequal_n rule, 
sqequalZero
Latex:
\mforall{}[F1,F2:Base].    \mforall{}n,m:\mBbbN{}.    (((m  \mleq{}  n)  {}\mRightarrow{}  (F1  \msim{}n  -  m  F2))  {}\mRightarrow{}  (mk\_lambdas(F1;m)  \msim{}n  mk\_lambdas(F2;m)))
Date html generated:
2017_10_01-AM-08_43_10
Last ObjectModification:
2017_07_26-PM-04_29_36
Theory : untyped!computation
Home
Index