Nuprl Lemma : partial_ap_gen_wf

[T:Type]. ∀[n:ℕ]. ∀[s:ℕ1]. ∀[m:ℕ(n s) 1]. ∀[A:ℕn ⟶ Type]. ∀[g:funtype(n;A;T) ⟶ T].
  (partial_ap_gen(g;n;s;m) ∈ funtype(m;λi.(A (s i));T) ⟶ T)


Proof




Definitions occuring in Statement :  partial_ap_gen: partial_ap_gen(g;n;s;m) funtype: funtype(n;A;T) int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T apply: a lambda: λx.A[x] function: x:A ⟶ B[x] subtract: m add: m natural_number: $n universe: Type
Definitions unfolded in proof :  partial_ap_gen: partial_ap_gen(g;n;s;m) member: t ∈ T uall: [x:A]. B[x] nat: int_seg: {i..j-} guard: {T} ge: i ≥  lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: uiff: uiff(P;Q) le: A ≤ B less_than: a < b subtype_rel: A ⊆B less_than': less_than'(a;b) so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) squash: T true: True
Lemmas referenced :  nat_wf ext-eq_weakening subtype_rel_weakening add-commutes subtype_rel-equal mk_lambdas_fun_wf int_subtype_base subtype_base_sq equal_wf int_formula_prop_eq_lemma intformeq_wf decidable__equal_int subtype_rel_self int_seg_subtype subtype_rel_dep_function false_wf int_seg_subtype_nat int_seg_wf lelt_wf decidable__lt add-member-int_seg1 le_wf int_formula_prop_wf int_term_value_add_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermAdd_wf intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties int_seg_properties subtract_wf funtype_wf mk_lambdas_wf funtype-split
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality applyEquality hypothesisEquality cut lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache dependent_set_memberEquality setElimination rename hypothesis natural_numberEquality addEquality productElimination dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll lambdaFormation instantiate cumulativity universeEquality equalityTransitivity equalitySymmetry independent_functionElimination imageElimination functionExtensionality imageMemberEquality baseClosed functionEquality introduction isect_memberFormation axiomEquality

Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:\mBbbN{}n  +  1].  \mforall{}[m:\mBbbN{}(n  -  s)  +  1].  \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].  \mforall{}[g:funtype(n;A;T)  {}\mrightarrow{}  T].
    (partial\_ap\_gen(g;n;s;m)  \mmember{}  funtype(m;\mlambda{}i.(A  (s  +  i));T)  {}\mrightarrow{}  T)



Date html generated: 2016_05_15-PM-02_10_09
Last ObjectModification: 2016_01_15-PM-10_23_55

Theory : untyped!computation


Home Index