Nuprl Lemma : transEquiv-trans-eq
∀[G:j⊢]. ∀[A,B:{G ⊢ _:c𝕌}]. ∀[p:{G ⊢ _:(Path_c𝕌 A B)}].
  (transEquivFun(p)
  = (λI,a,J,f,u. ((snd((p(s(a)) I+new-name(I) 1 <new-name(I)>))) J new-name(J) f,new-name(I)=new-name(J) 0 ⋅ 
                  (compOp(A) J new-name(J) s(f(a)) 0 ⋅ u)))
  ∈ {G ⊢ _:(decode(A) ⟶ decode(B))})
Proof
Definitions occuring in Statement : 
transEquiv-trans: transEquivFun(p), 
universe-comp-op: compOp(t), 
universe-decode: decode(t), 
cubical-universe: c𝕌, 
path-type: (Path_A a b), 
cubical-fun: (A ⟶ B), 
cubical-term-at: u(a), 
cubical-term: {X ⊢ _:A}, 
face_lattice: face_lattice(I), 
cube-set-restriction: f(s), 
cubical_set: CubicalSet, 
nc-e': g,i=j, 
nc-s: s, 
new-name: new-name(I), 
add-name: I+i, 
nh-id: 1, 
dM_inc: <x>, 
it: ⋅, 
uall: ∀[x:A]. B[x], 
pi2: snd(t), 
apply: f a, 
lambda: λx.A[x], 
equal: s = t ∈ T, 
lattice-0: 0
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
cubical-term: {X ⊢ _:A}, 
cubical-fun: (A ⟶ B), 
cubical-fun-family: cubical-fun-family(X; A; B; I; a), 
squash: ↓T, 
lattice-join: a ∨ b, 
record-select: r.x, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
fset-constrained-ac-lub: lub(P;ac1;ac2), 
fset-ac-lub: fset-ac-lub(eq;ac1;ac2), 
fset-minimals: fset-minimals(x,y.less[x; y]; s), 
fset-filter: {x ∈ s | P[x]}, 
filter: filter(P;l), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
fset-union: x ⋃ y, 
l-union: as ⋃ bs, 
lattice-0: 0, 
empty-fset: {}, 
nil: [], 
it: ⋅, 
fl-morph: <f>, 
fl-lift: fl-lift(T;eq;L;eqL;f0;f1), 
face-lattice-property, 
free-dist-lattice-with-constraints-property, 
lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac), 
lattice-extend: lattice-extend(L;eq;eqL;f;ac), 
lattice-fset-join: \/(s), 
fset-image: f"(s), 
f-union: f-union(domeq;rngeq;s;x.g[x]), 
list_accum: list_accum, 
implies: P ⇒ Q, 
cubical-term-at: u(a), 
true: True, 
cube+: cube+(I;i), 
formal-cube: formal-cube(I), 
names-hom: I ⟶ J, 
names: names(I), 
nat: ℕ, 
bool: 𝔹, 
unit: Unit, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
prop: ℙ, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
nc-s: s, 
nh-comp: g ⋅ f, 
dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g), 
compose: f o g, 
dM: dM(I), 
dM-lift: dM-lift(I;J;f), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
dM_inc: <x>, 
dminc: <i>, 
free-dl-inc: free-dl-inc(x), 
fset-singleton: {x}, 
cons: [a / b], 
DeMorgan-algebra: DeMorganAlgebra, 
I_cube: A(I), 
functor-ob: ob(F), 
pi1: fst(t), 
universe-comp-op: compOp(t), 
composition-op: Gamma ⊢ CompOp(A), 
bdd-distributive-lattice: BoundedDistributiveLattice, 
lattice-point: Point(l), 
face-presheaf: 𝔽, 
cube-set-restriction: f(s), 
pi2: snd(t), 
cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u), 
nc-e': g,i=j, 
cubical-universe: c𝕌, 
fibrant-type: FibrantType(X), 
ge: i ≥ j , 
decidable: Dec(P), 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u), 
closed-cubical-universe: cc𝕌, 
csm-fibrant-type: csm-fibrant-type(G;H;s;FT), 
closed-type-to-type: closed-type-to-type(T), 
so_lambda: so_lambda4, 
so_apply: x[s1;s2;s3;s4], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
universe-type: universe-type(t;I;a), 
nc-0: (i0), 
lattice-1: 1, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq), 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n), 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq), 
free-dist-lattice: free-dist-lattice(T; eq), 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
cubical-term-at_wf, 
I_cube_wf, 
fset_wf, 
nat_wf, 
cubical-term-equal, 
cubical-fun_wf, 
universe-decode_wf, 
transEquiv-trans_wf, 
istype-cubical-term, 
path-type_wf, 
cubical-universe_wf, 
istype-cubical-universe-term, 
cubical_set_wf, 
cubical_type_at_pair_lemma, 
transEquiv-trans-sq, 
cubical-type-at_wf, 
cube-set-restriction_wf, 
names-hom_wf, 
istype-cubical-type-at, 
cubical-type-ap-morph_wf, 
nh-comp_wf, 
subtype_rel-equal, 
cube-set-restriction-comp, 
I_cube_pair_redex_lemma, 
eq_int_wf, 
new-name_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
not-added-name, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
add-name_wf, 
nc-s_wf, 
f-subset-add-name, 
nh-id-right, 
subtype_rel_self, 
iff_weakening_equal, 
dM-lift-is-id2, 
f-subset_weakening, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
istype-int, 
strong-subtype-self, 
f-subset_wf, 
dM_inc_wf, 
names-subtype, 
names_wf, 
lattice-point_wf, 
dM_wf, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
bounded-lattice-structure_wf, 
bounded-lattice-axioms_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
dM-point-subtype, 
dM1_wf, 
dma-neg_wf, 
trivial-member-add-name1, 
fset-member_wf, 
nh-id_wf, 
s-comp-if-lemma1, 
dM-lift_wf2, 
dM-lift-inc, 
not-new-name, 
universe-comp-op_wf, 
lattice-0_wf, 
face_lattice_wf, 
face-presheaf_wf2, 
empty-cubical-subset-term, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
cubical-term_wf, 
cubical-subset_wf, 
csm-ap-type_wf, 
csm-comp_wf, 
formal-cube_wf1, 
subset-iota_wf, 
context-map_wf, 
cubical-path-0_wf, 
cubical-path-1_wf, 
nc-0_wf, 
cube-set-restriction-when-id, 
s-comp-nc-0-new, 
cubical-path-condition-0, 
cubical-path-condition_wf, 
nc-e'_wf, 
dM1-meet, 
nh-id-left, 
cube-set-restriction-id, 
path-type-at, 
pi2_wf, 
cubical-type_wf, 
composition-op_wf, 
pi1_wf_top, 
not_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
cube_set_map_wf, 
cubical-term-eqcd, 
istype-nat, 
istype-void, 
cube_set_restriction_pair_lemma, 
nc-e'-lemma2, 
universe-type-at, 
nh-comp-assoc, 
cubical_type_ap_morph_pair_lemma, 
lifting-strict-spread, 
strict4-spread, 
csm-ap-type-at, 
csm-ap-context-map, 
dM0_wf, 
dM0-sq-empty, 
eq_int_eq_true, 
btrue_wf, 
not_assert_elim, 
btrue_neq_bfalse, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
dM-lift-0-sq, 
interval-type-ap-morph, 
nc-1_wf, 
s-comp-nc-1-new, 
member-empty-cubical-subset, 
nc-e'-lemma1, 
universe-path-type-lemma-1, 
face-lattice-property, 
free-dist-lattice-with-constraints-property
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
hypothesisEquality, 
functionExtensionality, 
sqequalRule, 
hypothesis, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
dependent_functionElimination, 
universeIsType, 
applyEquality, 
lambdaEquality_alt, 
setElimination, 
rename, 
inhabitedIsType, 
Error :memTop, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_set_memberEquality_alt, 
lambdaFormation_alt, 
equalityIstype, 
independent_functionElimination, 
functionIsType, 
natural_numberEquality, 
unionElimination, 
equalityElimination, 
productElimination, 
dependent_pairFormation_alt, 
promote_hyp, 
cumulativity, 
voidElimination, 
universeEquality, 
intEquality, 
hyp_replacement, 
productEquality, 
isectEquality, 
functionEquality, 
independent_pairEquality, 
setEquality, 
approximateComputation, 
int_eqEquality, 
independent_pairFormation, 
setIsType
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_:c\mBbbU{}\}].  \mforall{}[p:\{G  \mvdash{}  \_:(Path\_c\mBbbU{}  A  B)\}].
    (transEquivFun(p)
    =  (\mlambda{}I,a,J,f,u.  ((snd((p(s(a))  I+new-name(I)  1  <new-name(I)>)))  J  new-name(J) 
                                    f,new-name(I)=new-name(J) 
                                    0 
                                    \mcdot{} 
                                    (compOp(A)  J  new-name(J)  s(f(a))  0  \mcdot{}  u))))
Date html generated:
2020_05_20-PM-07_37_09
Last ObjectModification:
2020_05_01-AM-10_11_18
Theory : cubical!type!theory
Home
Index