Nuprl Lemma : transEquiv-trans-eq

[G:j⊢]. ∀[A,B:{G ⊢ _:c𝕌}]. ∀[p:{G ⊢ _:(Path_c𝕌 B)}].
  (transEquivFun(p)
  I,a,J,f,u. ((snd((p(s(a)) I+new-name(I) 1 <new-name(I)>))) new-name(J) f,new-name(I)=new-name(J) 0 ⋅ 
                  (compOp(A) new-name(J) s(f(a)) 0 ⋅ u)))
  ∈ {G ⊢ _:(decode(A) ⟶ decode(B))})


Proof




Definitions occuring in Statement :  transEquiv-trans: transEquivFun(p) universe-comp-op: compOp(t) universe-decode: decode(t) cubical-universe: c𝕌 path-type: (Path_A b) cubical-fun: (A ⟶ B) cubical-term-at: u(a) cubical-term: {X ⊢ _:A} face_lattice: face_lattice(I) cube-set-restriction: f(s) cubical_set: CubicalSet nc-e': g,i=j nc-s: s new-name: new-name(I) add-name: I+i nh-id: 1 dM_inc: <x> it: uall: [x:A]. B[x] pi2: snd(t) apply: a lambda: λx.A[x] equal: t ∈ T lattice-0: 0
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] subtype_rel: A ⊆B cubical-term: {X ⊢ _:A} cubical-fun: (A ⟶ B) cubical-fun-family: cubical-fun-family(X; A; B; I; a) squash: T lattice-join: a ∨ b record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt fset-constrained-ac-lub: lub(P;ac1;ac2) fset-ac-lub: fset-ac-lub(eq;ac1;ac2) fset-minimals: fset-minimals(x,y.less[x; y]; s) fset-filter: {x ∈ P[x]} filter: filter(P;l) reduce: reduce(f;k;as) list_ind: list_ind fset-union: x ⋃ y l-union: as ⋃ bs lattice-0: 0 empty-fset: {} nil: [] it: fl-morph: <f> fl-lift: fl-lift(T;eq;L;eqL;f0;f1) face-lattice-property free-dist-lattice-with-constraints-property lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum implies:  Q cubical-term-at: u(a) true: True cube+: cube+(I;i) formal-cube: formal-cube(I) names-hom: I ⟶ J names: names(I) nat: bool: 𝔹 unit: Unit uiff: uiff(P;Q) and: P ∧ Q exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False prop: iff: ⇐⇒ Q rev_implies:  Q nc-s: s nh-comp: g ⋅ f dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g) compose: g dM: dM(I) dM-lift: dM-lift(I;J;f) so_lambda: λ2x.t[x] so_apply: x[s] dM_inc: <x> dminc: <i> free-dl-inc: free-dl-inc(x) fset-singleton: {x} cons: [a b] DeMorgan-algebra: DeMorganAlgebra I_cube: A(I) functor-ob: ob(F) pi1: fst(t) universe-comp-op: compOp(t) composition-op: Gamma ⊢ CompOp(A) bdd-distributive-lattice: BoundedDistributiveLattice lattice-point: Point(l) face-presheaf: 𝔽 cube-set-restriction: f(s) pi2: snd(t) cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) nc-e': g,i=j cubical-universe: c𝕌 fibrant-type: FibrantType(X) ge: i ≥  decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u) closed-cubical-universe: cc𝕌 csm-fibrant-type: csm-fibrant-type(G;H;s;FT) closed-type-to-type: closed-type-to-type(T) so_lambda: so_lambda4 so_apply: x[s1;s2;s3;s4] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] universe-type: universe-type(t;I;a) nc-0: (i0) lattice-1: 1 free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) nequal: a ≠ b ∈ 
Lemmas referenced :  cubical-term-at_wf I_cube_wf fset_wf nat_wf cubical-term-equal cubical-fun_wf universe-decode_wf transEquiv-trans_wf istype-cubical-term path-type_wf cubical-universe_wf istype-cubical-universe-term cubical_set_wf cubical_type_at_pair_lemma transEquiv-trans-sq cubical-type-at_wf cube-set-restriction_wf names-hom_wf istype-cubical-type-at cubical-type-ap-morph_wf nh-comp_wf subtype_rel-equal cube-set-restriction-comp I_cube_pair_redex_lemma eq_int_wf new-name_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int not-added-name equal_wf squash_wf true_wf istype-universe add-name_wf nc-s_wf f-subset-add-name nh-id-right subtype_rel_self iff_weakening_equal dM-lift-is-id2 f-subset_weakening int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf istype-int strong-subtype-self f-subset_wf dM_inc_wf names-subtype names_wf lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf dM-point-subtype dM1_wf dma-neg_wf trivial-member-add-name1 fset-member_wf nh-id_wf s-comp-if-lemma1 dM-lift_wf2 dM-lift-inc not-new-name universe-comp-op_wf lattice-0_wf face_lattice_wf face-presheaf_wf2 empty-cubical-subset-term cubical-type-cumulativity2 cubical_set_cumulativity-i-j cubical-term_wf cubical-subset_wf csm-ap-type_wf csm-comp_wf formal-cube_wf1 subset-iota_wf context-map_wf cubical-path-0_wf cubical-path-1_wf nc-0_wf cube-set-restriction-when-id s-comp-nc-0-new cubical-path-condition-0 cubical-path-condition_wf nc-e'_wf dM1-meet nh-id-left cube-set-restriction-id path-type-at pi2_wf cubical-type_wf composition-op_wf pi1_wf_top not_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le cube_set_map_wf cubical-term-eqcd istype-nat istype-void cube_set_restriction_pair_lemma nc-e'-lemma2 universe-type-at nh-comp-assoc cubical_type_ap_morph_pair_lemma lifting-strict-spread strict4-spread csm-ap-type-at csm-ap-context-map dM0_wf dM0-sq-empty eq_int_eq_true btrue_wf not_assert_elim btrue_neq_bfalse intformeq_wf int_formula_prop_eq_lemma dM-lift-0-sq interval-type-ap-morph nc-1_wf s-comp-nc-1-new member-empty-cubical-subset nc-e'-lemma1 universe-path-type-lemma-1 face-lattice-property free-dist-lattice-with-constraints-property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination because_Cache hypothesisEquality functionExtensionality sqequalRule hypothesis equalityTransitivity equalitySymmetry independent_isectElimination dependent_functionElimination universeIsType applyEquality lambdaEquality_alt setElimination rename inhabitedIsType Error :memTop,  applyLambdaEquality imageMemberEquality baseClosed imageElimination dependent_set_memberEquality_alt lambdaFormation_alt equalityIstype independent_functionElimination functionIsType natural_numberEquality unionElimination equalityElimination productElimination dependent_pairFormation_alt promote_hyp cumulativity voidElimination universeEquality intEquality hyp_replacement productEquality isectEquality functionEquality independent_pairEquality setEquality approximateComputation int_eqEquality independent_pairFormation setIsType

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_:c\mBbbU{}\}].  \mforall{}[p:\{G  \mvdash{}  \_:(Path\_c\mBbbU{}  A  B)\}].
    (transEquivFun(p)
    =  (\mlambda{}I,a,J,f,u.  ((snd((p(s(a))  I+new-name(I)  1  <new-name(I)>)))  J  new-name(J) 
                                    f,new-name(I)=new-name(J) 
                                    0 
                                    \mcdot{} 
                                    (compOp(A)  J  new-name(J)  s(f(a))  0  \mcdot{}  u))))



Date html generated: 2020_05_20-PM-07_37_09
Last ObjectModification: 2020_05_01-AM-10_11_18

Theory : cubical!type!theory


Home Index