Nuprl Lemma : not-ip-triangle-implies
∀rv:InnerProductSpace. ∀a,b,c:Point.  ((¬Δ(a;b;c)) ⇒ (¬((¬a_b_c) ∧ (¬b_c_a) ∧ (¬c_a_b))))
Proof
Definitions occuring in Statement : 
ip-triangle: Δ(a;b;c), 
ip-between: a_b_c, 
inner-product-space: InnerProductSpace, 
ss-point: Point, 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
not: ¬A, 
false: False, 
member: t ∈ T, 
prop: ℙ, 
and: P ∧ Q, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
or: P ∨ Q, 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
rneq: x ≠ y, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
ml-term-to-poly: ml-term-to-poly(t), 
nil: [], 
it: ⋅, 
has-value: (a)↓, 
req_int_terms: t1 ≡ t2, 
top: Top, 
uiff: uiff(P;Q), 
rge: x ≥ y, 
rgt: x > y, 
cand: A c∧ B, 
rsub: x - y, 
rev_uimplies: rev_uimplies(P;Q), 
rdiv: (x/y), 
rv-sub: x - y, 
rv-minus: -x, 
itermConstant: "const", 
rooint: (l, u), 
i-member: r ∈ I, 
ss-eq: x ≡ y
Lemmas referenced : 
not_wf, 
ip-between_wf, 
ip-triangle_wf, 
ss-point_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
false_wf, 
or_wf, 
ss-sep_wf, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle, 
not-ip-triangle, 
ip-between-iff, 
exists_wf, 
real_wf, 
i-member_wf, 
rooint_wf, 
int-to-real_wf, 
ss-eq_wf, 
rv-add_wf, 
rv-mul_wf, 
rsub_wf, 
ss-sep-symmetry, 
rabs-positive-iff, 
radd-preserves-rless, 
radd_wf, 
itermSubtract_wf, 
itermAdd_wf, 
itermVar_wf, 
itermConstant_wf, 
rless-int, 
rless_functionality, 
real_polynomial_null, 
evalall-sqequal, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
req-iff-rsub-is-0, 
rless_functionality_wrt_implies, 
rleq_weakening_equal, 
rleq_weakening_rless, 
rdiv_wf, 
rminus_wf, 
rless_wf, 
radd-ac, 
radd-rminus-both, 
rmul-one-both, 
rmul-distrib2, 
rmul-identity1, 
req_inversion, 
rminus-as-rmul, 
radd-int, 
rmul_functionality, 
radd_comm, 
rmul-rdiv-cancel2, 
rmul_over_rminus, 
rmul-distrib, 
req_transitivity, 
rmul-zero-both, 
rminus_functionality, 
rminus-zero, 
radd_functionality, 
req_weakening, 
radd-zero-both, 
rmul_wf, 
rmul_preserves_rless, 
member_rooint_lemma, 
rv-sub_wf, 
ss-eq_functionality, 
ss-eq_weakening, 
rv-add_functionality, 
rv-mul_functionality, 
rmul_preserves_req, 
equal_wf, 
rinv_wf2, 
itermMultiply_wf, 
itermMinus_wf, 
req_functionality, 
real_term_value_mul_lemma, 
real_term_value_minus_lemma, 
rmul-rinv, 
req_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
radd-preserves-req, 
rv-minus_wf, 
rv-0_wf, 
uiff_transitivity, 
rv-mul-linear, 
rv-add-assoc, 
rv-mul-mul, 
rv-add-swap, 
rv-mul-add-alt, 
rv-mul-add, 
ss-eq_transitivity, 
rinv-as-rdiv, 
rminus-rdiv, 
rv-mul0, 
rv-add-0, 
rsub_functionality, 
rv-mul1, 
trivial-rsub-rless, 
real_term_polynomial, 
rless-implies-rless, 
radd-assoc, 
rminus-rminus, 
rmul-int, 
rminus-radd, 
rmul-minus, 
rv-mul-1-add-alt, 
rv-add-comm, 
rv-0-add, 
rleq_antisymmetry, 
not-rless, 
ss-sep_functionality, 
ip-between_functionality, 
ip-between-trivial2, 
ip-between-trivial
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
productEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
functionEquality, 
unionElimination, 
dependent_functionElimination, 
productElimination, 
addLevel, 
impliesFunctionality, 
independent_pairFormation, 
lambdaEquality, 
natural_numberEquality, 
andLevelFunctionality, 
impliesLevelFunctionality, 
imageMemberEquality, 
baseClosed, 
computeAll, 
sqleReflexivity, 
mlComputation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
dependent_pairFormation, 
inrFormation, 
levelHypothesis, 
addEquality, 
minusEquality, 
equalityTransitivity, 
equalitySymmetry, 
imageElimination, 
universeEquality, 
multiplyEquality
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b,c:Point.    ((\mneg{}\mDelta{}(a;b;c))  {}\mRightarrow{}  (\mneg{}((\mneg{}a\_b\_c)  \mwedge{}  (\mneg{}b\_c\_a)  \mwedge{}  (\mneg{}c\_a\_b))))
Date html generated:
2017_10_05-AM-00_00_45
Last ObjectModification:
2017_07_28-AM-08_54_44
Theory : inner!product!spaces
Home
Index