Nuprl Lemma : rv-circle-circle-lemma

n:ℕ. ∀r1,r2:{r:ℝr0 ≤ r} . ∀b:ℝ^n.
  ((r0 < ||b||)
   (∀b':ℝ^n
        ((b⋅b' r0)
         (||b'|| ||b||)
         ((r1^2 r2^2) ||b||^2^2 ≤ (r(4) ||b||^2 r1^2))
         let ((r1^2 r2^2) ||b||^2/r(2)) in
            let (||b||^2 r1^2) c^2 in
            ∀x:ℝ^n
              ((req-vec(n;x;(r1/||b||^2)*c*b rsqrt(d)*b') ∨ req-vec(n;x;(r1/||b||^2)*c*b rsqrt(d)*b'))
               ((||x|| r1) ∧ (||x b|| r2))))))


Proof




Definitions occuring in Statement :  real-vec-norm: ||x|| dot-product: x⋅y real-vec-mul: a*X real-vec-sub: Y real-vec-add: Y req-vec: req-vec(n;x;y) real-vec: ^n rsqrt: rsqrt(x) rdiv: (x/y) rleq: x ≤ y rless: x < y rnexp: x^k1 rsub: y req: y rmul: b radd: b int-to-real: r(n) real: nat: let: let all: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] let: let prop: nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q less_than: a < b squash: T true: True uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) exp: i^n primrec: primrec(n;b;c) subtract: m itermConstant: "const" req_int_terms: t1 ≡ t2 top: Top rdiv: (x/y) sq_stable: SqStable(P) cand: c∧ B subtype_rel: A ⊆B rsub: y
Lemmas referenced :  radd_wf rsub_wf rnexp_wf real_wf rleq_wf rmul_wf equal_wf false_wf le_wf real-vec-norm_wf int-to-real_wf req_wf dot-product_wf real-vec_wf rless_wf set_wf nat_wf radd-preserves-rleq rdiv_wf rless-int rinv_wf2 exp_wf2 req-int rless_transitivity1 rleq_weakening rmul_preserves_rleq rleq-implies-rleq real_term_polynomial itermSubtract_wf itermMultiply_wf itermConstant_wf itermVar_wf itermAdd_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_add_lemma req-iff-rsub-is-0 rleq_functionality req_transitivity rmul_functionality req_weakening rnexp_functionality rinv-mul-as-rdiv radd_functionality req_functionality rnexp-int rless_functionality req_inversion rnexp-rdiv rdiv_functionality rmul-rinv3 real-vec-norm-squared real-vec-add_wf real-vec-mul_wf req-vec_wf or_wf real-vec-sub_wf sq_stable__rleq real-vec-norm-nonneg square-req-iff rsqrt_wf rnexp-positive dot-product_functionality dot-product-comm dot-product-linearity2 rmul-one-both rmul-int-rdiv rmul-rdiv-cancel rmul-ac rmul_comm rmul-assoc uiff_transitivity rmul_preserves_req iff_weakening_equal true_wf squash_wf dot-product-linearity1 radd-zero-both radd-ac radd-assoc rmul-zero-both sq_stable__req radd-rminus-assoc radd_comm rnexp2 rminus_wf rmul-distrib rsub_functionality dot-product-linearity1-sub rminus-rminus rminus-as-rmul rmul-int rminus-zero rminus-radd rminus_functionality radd-int rmul-distrib2 radd-rminus-both radd-preserves-req req-vec_weakening rmul_over_rminus rmul-rdiv-cancel2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination because_Cache hypothesis sqequalRule hypothesisEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination dependent_set_memberEquality natural_numberEquality independent_pairFormation setElimination rename lambdaEquality independent_isectElimination inrFormation productElimination imageMemberEquality baseClosed computeAll int_eqEquality intEquality isect_memberEquality voidElimination voidEquality imageElimination addLevel productEquality unionElimination multiplyEquality universeEquality applyEquality comment minusEquality addEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}r1,r2:\{r:\mBbbR{}|  r0  \mleq{}  r\}  .  \mforall{}b:\mBbbR{}\^{}n.
    ((r0  <  ||b||)
    {}\mRightarrow{}  (\mforall{}b':\mBbbR{}\^{}n
                ((b\mcdot{}b'  =  r0)
                {}\mRightarrow{}  (||b'||  =  ||b||)
                {}\mRightarrow{}  ((r1\^{}2  -  r2\^{}2)  +  ||b||\^{}2\^{}2  \mleq{}  (r(4)  *  ||b||\^{}2  *  r1\^{}2))
                {}\mRightarrow{}  let  c  =  ((r1\^{}2  -  r2\^{}2)  +  ||b||\^{}2/r(2))  in
                        let  d  =  (||b||\^{}2  *  r1\^{}2)  -  c\^{}2  in
                        \mforall{}x:\mBbbR{}\^{}n
                            ((req-vec(n;x;(r1/||b||\^{}2)*c*b  +  rsqrt(d)*b')
                            \mvee{}  req-vec(n;x;(r1/||b||\^{}2)*c*b  -  rsqrt(d)*b'))
                            {}\mRightarrow{}  ((||x||  =  r1)  \mwedge{}  (||x  -  b||  =  r2))))))



Date html generated: 2017_10_03-AM-11_36_35
Last ObjectModification: 2017_07_28-AM-08_28_13

Theory : reals


Home Index