Nuprl Lemma : nat_op_add

[g:IMonoid]. ∀[e:|g|]. ∀[a,b:ℕ].  (a x(*;e) (a x(*;e) x(*;e) e) ∈ |g|)


Proof




Definitions occuring in Statement :  nat_op: x(op;id) e imon: IMonoid grp_id: e grp_op: * grp_car: |g| nat: uall: [x:A]. B[x] infix_ap: y add: m equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T imon: IMonoid nat_op: x(op;id) e squash: T prop: nat: uimplies: supposing a ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q infix_ap: y
Lemmas referenced :  nat_wf grp_car_wf imon_wf equal_wf squash_wf true_wf itop_split nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf itermAdd_wf int_term_value_add_lemma int_seg_wf infix_ap_wf grp_op_wf itop_wf grp_id_wf iff_weakening_equal itop_shift minus-one-mul add-mul-special zero-mul add-associates add-commutes minus-one-mul-top zero-add
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality axiomEquality because_Cache setElimination rename applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality natural_numberEquality addEquality independent_isectElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality independent_pairFormation computeAll imageMemberEquality baseClosed productElimination independent_functionElimination minusEquality functionEquality cumulativity

Latex:
\mforall{}[g:IMonoid].  \mforall{}[e:|g|].  \mforall{}[a,b:\mBbbN{}].    (a  +  b  x(*;e)  e  =  (a  x(*;e)  e  *  b  x(*;e)  e))



Date html generated: 2017_10_01-AM-08_16_04
Last ObjectModification: 2017_02_28-PM-02_01_04

Theory : groups_1


Home Index