Nuprl Lemma : itop_split

[g:IMonoid]. ∀[a,b,c:ℤ].
  (∀[E:{a..c-} ⟶ |g|]. (*,e) a ≤ j < c. E[j] (*,e) a ≤ j < b. E[j] * Π(*,e) b ≤ j < c. E[j]) ∈ |g|)) supposing 
     ((b ≤ c) and 
     (a ≤ b))


Proof




Definitions occuring in Statement :  itop: Π(op,id) lb ≤ i < ub. E[i] imon: IMonoid grp_id: e grp_op: * grp_car: |g| int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] infix_ap: y so_apply: x[s] le: A ≤ B function: x:A ⟶ B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a imon: IMonoid prop: all: x:A. B[x] so_lambda: λ2x.t[x] int_upper: {i...} so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top iff: ⇐⇒ Q rev_implies:  Q guard: {T} squash: T infix_ap: y true: True subtype_rel: A ⊆B le: A ≤ B subtract: m
Lemmas referenced :  int_seg_wf grp_car_wf le_wf imon_wf int_le_to_int_upper isect_wf uall_wf equal_wf itop_wf grp_op_wf grp_id_wf infix_ap_wf int_upper_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf lelt_wf decidable__le int_upper_wf int_upper_ind subtract_wf itermSubtract_wf itermConstant_wf int_term_value_subtract_lemma int_term_value_constant_lemma itermAdd_wf int_term_value_add_lemma squash_wf true_wf itop_unroll_base iff_weakening_equal mon_ident itop_unroll_lo subtract-add-cancel itop_unroll_hi mon_assoc decidable__equal_int intformeq_wf int_formula_prop_eq_lemma add-associates add-swap add-commutes zero-add
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality axiomEquality hypothesis functionEquality extract_by_obid setElimination rename equalityTransitivity equalitySymmetry intEquality because_Cache dependent_functionElimination lambdaEquality applyEquality functionExtensionality dependent_set_memberEquality productElimination independent_pairFormation unionElimination natural_numberEquality independent_isectElimination dependent_pairFormation int_eqEquality voidElimination voidEquality computeAll independent_functionElimination instantiate lambdaFormation addEquality imageElimination universeEquality imageMemberEquality baseClosed cumulativity minusEquality

Latex:
\mforall{}[g:IMonoid].  \mforall{}[a,b,c:\mBbbZ{}].
    (\mforall{}[E:\{a..c\msupminus{}\}  {}\mrightarrow{}  |g|]
          (\mPi{}(*,e)  a  \mleq{}  j  <  c.  E[j]  =  (\mPi{}(*,e)  a  \mleq{}  j  <  b.  E[j]  *  \mPi{}(*,e)  b  \mleq{}  j  <  c.  E[j])))  supposing 
          ((b  \mleq{}  c)  and 
          (a  \mleq{}  b))



Date html generated: 2017_10_01-AM-08_15_55
Last ObjectModification: 2017_02_28-PM-02_01_38

Theory : groups_1


Home Index