Nuprl Lemma : itop_unroll_lo

[g:IMonoid]. ∀[i,j:ℤ].
  ∀[E:{i..j-} ⟶ |g|]. (*,e) i ≤ k < j. E[k] (E[i] * Π(*,e) 1 ≤ k < j. E[k]) ∈ |g|) supposing i < j


Proof




Definitions occuring in Statement :  itop: Π(op,id) lb ≤ i < ub. E[i] imon: IMonoid grp_id: e grp_op: * grp_car: |g| int_seg: {i..j-} less_than: a < b uimplies: supposing a uall: [x:A]. B[x] infix_ap: y so_apply: x[s] function: x:A ⟶ B[x] add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a imon: IMonoid prop: all: x:A. B[x] so_lambda: λ2x.t[x] int_upper: {i...} so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q guard: {T} decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top iff: ⇐⇒ Q rev_implies:  Q infix_ap: y squash: T true: True subtype_rel: A ⊆B
Lemmas referenced :  int_seg_wf grp_car_wf less_than_wf imon_wf int_lt_to_int_upper_uniform uall_wf equal_wf itop_wf grp_op_wf grp_id_wf infix_ap_wf int_upper_properties decidable__le satisfiable-full-omega-tt intformnot_wf intformle_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformand_wf intformless_wf itermAdd_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_add_lemma int_term_value_constant_lemma lelt_wf int_upper_wf int_upper_ind_uniform int_seg_properties squash_wf true_wf itop_unroll_hi iff_weakening_equal subtract_wf itermSubtract_wf int_term_value_subtract_lemma decidable__equal_int intformeq_wf int_formula_prop_eq_lemma mon_assoc itop_unroll_unit itop_unroll_base mon_ident
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality axiomEquality hypothesis functionEquality extract_by_obid setElimination rename equalityTransitivity equalitySymmetry intEquality because_Cache dependent_functionElimination lambdaEquality applyEquality functionExtensionality dependent_set_memberEquality independent_pairFormation addEquality natural_numberEquality unionElimination independent_isectElimination dependent_pairFormation int_eqEquality voidElimination voidEquality computeAll productElimination independent_functionElimination instantiate lambdaFormation imageElimination universeEquality imageMemberEquality baseClosed

Latex:
\mforall{}[g:IMonoid].  \mforall{}[i,j:\mBbbZ{}].
    \mforall{}[E:\{i..j\msupminus{}\}  {}\mrightarrow{}  |g|].  (\mPi{}(*,e)  i  \mleq{}  k  <  j.  E[k]  =  (E[i]  *  \mPi{}(*,e)  i  +  1  \mleq{}  k  <  j.  E[k])) 
    supposing  i  <  j



Date html generated: 2017_10_01-AM-08_15_47
Last ObjectModification: 2017_02_28-PM-02_00_44

Theory : groups_1


Home Index