Nuprl Lemma : pa-add_functionality
∀[p:{2...}]. ∀[x1,y1,x2,y2:basic-padic(p)].
  (pa-add(p;x1;y1) = pa-add(p;x2;y2) ∈ padic(p)) supposing (bpa-equiv(p;x1;x2) and bpa-equiv(p;y1;y2))
Proof
Definitions occuring in Statement : 
pa-add: pa-add(p;x;y)
, 
padic: padic(p)
, 
bpa-equiv: bpa-equiv(p;x;y)
, 
basic-padic: basic-padic(p)
, 
int_upper: {i...}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
int_upper: {i...}
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
pa-add: pa-add(p;x;y)
, 
all: ∀x:A. B[x]
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
basic-padic: basic-padic(p)
, 
bpa-equiv: bpa-equiv(p;x;y)
, 
bpa-add: bpa-add(p;x;y)
, 
cand: A c∧ B
, 
rev_implies: P 
⇐ Q
, 
nat: ℕ
, 
ge: i ≥ j 
, 
has-value: (a)↓
, 
le: A ≤ B
, 
guard: {T}
, 
true: True
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
equal-padics, 
pa-add_wf, 
bpa-equiv-iff-norm, 
bpa-add_wf, 
int_upper_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
istype-less_than, 
imax_ub, 
nat_properties, 
decidable__le, 
istype-le, 
value-type-has-value, 
int-value-type, 
imax_wf, 
fastexp_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
bpa-equiv_wf, 
basic-padic_wf, 
istype-int_upper, 
imax_nat, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
p-adics_wf, 
p-int_wf, 
exp_wf2, 
p-mul_wf, 
p-add_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
p-distrib, 
nat_plus_wf, 
p-mul-assoc, 
exp-fastexp, 
p-mul-int, 
subtype_rel_self, 
exp_add, 
iff_weakening_equal, 
itermAdd_wf, 
int_term_value_add_lemma, 
istype-nat, 
decidable__equal_int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
productElimination, 
independent_isectElimination, 
dependent_functionElimination, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
Error :memTop, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
voidElimination, 
inlFormation_alt, 
inrFormation_alt, 
callbyvalueReduce, 
intEquality, 
inhabitedIsType, 
lambdaFormation_alt, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
equalityIstype, 
productIsType, 
applyEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
instantiate, 
universeEquality, 
addEquality, 
hyp_replacement
Latex:
\mforall{}[p:\{2...\}].  \mforall{}[x1,y1,x2,y2:basic-padic(p)].
    (pa-add(p;x1;y1)  =  pa-add(p;x2;y2))  supposing  (bpa-equiv(p;x1;x2)  and  bpa-equiv(p;y1;y2))
Date html generated:
2020_05_19-PM-10_08_57
Last ObjectModification:
2020_01_08-PM-06_54_20
Theory : rings_1
Home
Index