Nuprl Lemma : equal-padics

[p:ℤ]. ∀[x,y:padic(p)].  uiff(x y ∈ padic(p);x y ∈ basic-padic(p))


Proof




Definitions occuring in Statement :  padic: padic(p) basic-padic: basic-padic(p) uiff: uiff(P;Q) uall: [x:A]. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T prop: subtype_rel: A ⊆B padic: padic(p) basic-padic: basic-padic(p) so_lambda: λ2x.t[x] so_apply: x[s] pi2: snd(t) pi1: fst(t) nat: sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: btrue: tt bfalse: ff exists: x:A. B[x] bnot: ¬bb ifthenelse: if then else fi  assert: b false: False nequal: a ≠ b ∈  not: ¬A ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top le: A ≤ B less_than': less_than'(a;b) eq_int: (i =z j) int_upper: {i...} p-units: p-units(p) p-adics: p-adics(p) nat_plus: + less_than: a < b squash: T true: True int_seg: {i..j-}
Lemmas referenced :  equal_wf padic_wf basic-padic_wf padic_subtype_basic-padic pi2_wf nat_wf p-adics_wf pi1_wf subtype_base_sq set_subtype_base le_wf int_subtype_base decidable__equal_int eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int nat_properties full-omega-unsat intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_not_lemma int_formula_prop_wf false_wf ifthenelse_wf p-units_wf upper_subtype_nat nequal-le-implies zero-add not_wf equal-wf-T-base less_than_wf int_seg_wf exp_wf2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality sqequalRule because_Cache intEquality productElimination applyLambdaEquality lambdaEquality promote_hyp instantiate cumulativity independent_isectElimination natural_numberEquality dependent_functionElimination independent_functionElimination setElimination rename unionElimination lambdaFormation equalityElimination equalityTransitivity equalitySymmetry dependent_pairFormation voidElimination approximateComputation int_eqEquality isect_memberEquality voidEquality dependent_pairEquality dependent_set_memberEquality universeEquality hypothesis_subsumption imageMemberEquality baseClosed

Latex:
\mforall{}[p:\mBbbZ{}].  \mforall{}[x,y:padic(p)].    uiff(x  =  y;x  =  y)



Date html generated: 2018_05_21-PM-03_26_12
Last ObjectModification: 2018_05_19-AM-08_23_10

Theory : rings_1


Home Index