Nuprl Lemma : append_segment

T:Type. ∀as:T List. ∀i:{0...||as||}. ∀j:{i...||as||}. ∀k:{j...||as||}.
  (((as[i..j-]) (as[j..k-])) (as[i..k-]) ∈ (T List))


Proof




Definitions occuring in Statement :  segment: as[m..n-] length: ||as|| append: as bs list: List int_iseg: {i...j} all: x:A. B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] int_iseg: {i...j} subtype_rel: A ⊆B so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a implies:  Q cand: c∧ B guard: {T} decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top true: True squash: T iff: ⇐⇒ Q rev_implies:  Q int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B lapp_imon: <List,@> grp_car: |g| pi1: fst(t) imon: IMonoid grp_op: * pi2: snd(t) infix_ap: y
Lemmas referenced :  int_iseg_wf length_wf list_wf subtype_rel_sets le_wf int_iseg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf equal_wf squash_wf true_wf append_wf segment_factor iff_weakening_equal mon_itop_wf lapp_imon_wf cons_wf select_wf int_seg_properties decidable__lt intformless_wf int_formula_prop_less_lemma nil_wf int_seg_wf grp_car_wf imon_wf mon_itop_split
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality cumulativity natural_numberEquality universeEquality because_Cache applyEquality sqequalRule intEquality lambdaEquality productEquality independent_isectElimination setEquality productElimination independent_pairFormation applyLambdaEquality equalityTransitivity equalitySymmetry dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality computeAll imageElimination imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}T:Type.  \mforall{}as:T  List.  \mforall{}i:\{0...||as||\}.  \mforall{}j:\{i...||as||\}.  \mforall{}k:\{j...||as||\}.
    (((as[i..j\msupminus{}])  @  (as[j..k\msupminus{}]))  =  (as[i..k\msupminus{}]))



Date html generated: 2017_10_01-AM-09_57_44
Last ObjectModification: 2017_03_03-PM-00_59_19

Theory : list_2


Home Index