Nuprl Lemma : detach_msubset

s:DSet. ∀a,b:MSet{s}.  ((↑(a ⊆b b))  (b ((b a) a) ∈ MSet{s}))


Proof




Definitions occuring in Statement :  bsubmset: a ⊆b b mset_diff: b mset_sum: b mset: MSet{s} assert: b all: x:A. B[x] implies:  Q equal: t ∈ T dset: DSet
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q squash: T subtype_rel: A ⊆B nat: true: True uimplies: supposing a guard: {T} dset: DSet le: A ≤ B bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top bfalse: ff
Lemmas referenced :  assert_wf bsubmset_wf mset_wf dset_wf eq_mset_iff_eq_counts mset_sum_wf mset_diff_wf equal_wf squash_wf true_wf mset_count_wf nat_wf mset_count_sum add_functionality_wrt_eq ndiff_wf mset_count_diff iff_weakening_equal set_car_wf ndiff_add_eq_imax count_bsubmset imax_unfold le_int_wf bool_wf uiff_transitivity equal-wf-T-base le_wf eqtt_to_assert assert_of_le_int decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf lt_int_wf less_than_wf bnot_wf eqff_to_assert assert_functionality_wrt_uiff bnot_of_le_int assert_of_lt_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality productElimination independent_functionElimination applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality intEquality setElimination rename sqequalRule because_Cache natural_numberEquality imageMemberEquality baseClosed independent_isectElimination unionElimination equalityElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll

Latex:
\mforall{}s:DSet.  \mforall{}a,b:MSet\{s\}.    ((\muparrow{}(a  \msubseteq{}\msubb{}  b))  {}\mRightarrow{}  (b  =  ((b  -  a)  +  a)))



Date html generated: 2017_10_01-AM-10_00_24
Last ObjectModification: 2017_03_03-PM-01_01_49

Theory : mset


Home Index