Nuprl Lemma : oal_mcp_wf

s:LOSet. ∀g:AbDMon.  (oal_mcp(s;g) ∈ MCopower(s;g))


Proof




Definitions occuring in Statement :  oal_mcp: oal_mcp(s;g) mcopower: MCopower(s;g) all: x:A. B[x] member: t ∈ T abdmonoid: AbDMon loset: LOSet
Definitions unfolded in proof :  oal_mcp: oal_mcp(s;g) all: x:A. B[x] member: t ∈ T mcopower: MCopower(s;g) mcopower_sig: mcopower_sig{i:l}(s;g) subtype_rel: A ⊆B loset: LOSet poset: POSet{i} qoset: QOSet so_lambda: λ2x.t[x] uall: [x:A]. B[x] abdmonoid: AbDMon dmon: DMon mon: Mon oal_mon: oal_mon(a;b) grp_car: |g| pi1: fst(t) oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) set_car: |p| dset_list: List set_prod: s × t dset_of_mon: g↓set so_apply: x[s] abmonoid: AbMon and: P ∧ Q cand: c∧ B mcopower_mon: m.mon mcopower_inj: m.inj pi2: snd(t) dset: DSet mcopower_umap: m.umap tlambda: λx:T. b[x] prop: uimplies: supposing a monoid_hom: MonHom(M1,M2)
Lemmas referenced :  abdmonoid_wf loset_wf oal_mon_wf abdmonoid_abmonoid oal_inj_wf mset_for_wf abmonoid_subtype_iabmonoid lookup_wf grp_car_wf grp_id_wf oal_dom_wf abmonoid_wf set_car_wf oal_inj_mon_hom oal_umap_char monoid_hom_wf all_wf monoid_hom_p_wf mcopower_mon_wf mcopower_inj_wf uni_sat_wf mcopower_umap_wf subtype_rel_dep_function equal_wf compose_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut sqequalHypSubstitution hypothesis lemma_by_obid dependent_set_memberEquality dependent_pairEquality dependent_functionElimination thin hypothesisEquality applyEquality lambdaEquality because_Cache setElimination rename isectElimination functionEquality cumulativity universeEquality productEquality independent_pairFormation instantiate independent_isectElimination

Latex:
\mforall{}s:LOSet.  \mforall{}g:AbDMon.    (oal\_mcp(s;g)  \mmember{}  MCopower(s;g))



Date html generated: 2016_05_16-AM-08_23_05
Last ObjectModification: 2015_12_28-PM-06_28_57

Theory : polynom_2


Home Index