Nuprl Lemma : oal_mcp_wf
∀s:LOSet. ∀g:AbDMon. (oal_mcp(s;g) ∈ MCopower(s;g))
Proof
Definitions occuring in Statement :
oal_mcp: oal_mcp(s;g)
,
mcopower: MCopower(s;g)
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
abdmonoid: AbDMon
,
loset: LOSet
Definitions unfolded in proof :
oal_mcp: oal_mcp(s;g)
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
mcopower: MCopower(s;g)
,
mcopower_sig: mcopower_sig{i:l}(s;g)
,
subtype_rel: A ⊆r B
,
loset: LOSet
,
poset: POSet{i}
,
qoset: QOSet
,
so_lambda: λ2x.t[x]
,
uall: ∀[x:A]. B[x]
,
abdmonoid: AbDMon
,
dmon: DMon
,
mon: Mon
,
oal_mon: oal_mon(a;b)
,
grp_car: |g|
,
pi1: fst(t)
,
oalist: oal(a;b)
,
dset_set: dset_set,
mk_dset: mk_dset(T, eq)
,
set_car: |p|
,
dset_list: s List
,
set_prod: s × t
,
dset_of_mon: g↓set
,
so_apply: x[s]
,
abmonoid: AbMon
,
and: P ∧ Q
,
cand: A c∧ B
,
mcopower_mon: m.mon
,
mcopower_inj: m.inj
,
pi2: snd(t)
,
dset: DSet
,
mcopower_umap: m.umap
,
tlambda: λx:T. b[x]
,
prop: ℙ
,
uimplies: b supposing a
,
monoid_hom: MonHom(M1,M2)
Lemmas referenced :
abdmonoid_wf,
loset_wf,
oal_mon_wf,
abdmonoid_abmonoid,
oal_inj_wf,
mset_for_wf,
abmonoid_subtype_iabmonoid,
lookup_wf,
grp_car_wf,
grp_id_wf,
oal_dom_wf,
abmonoid_wf,
set_car_wf,
oal_inj_mon_hom,
oal_umap_char,
monoid_hom_wf,
all_wf,
monoid_hom_p_wf,
mcopower_mon_wf,
mcopower_inj_wf,
uni_sat_wf,
mcopower_umap_wf,
subtype_rel_dep_function,
equal_wf,
compose_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
lambdaFormation,
cut,
sqequalHypSubstitution,
hypothesis,
lemma_by_obid,
dependent_set_memberEquality,
dependent_pairEquality,
dependent_functionElimination,
thin,
hypothesisEquality,
applyEquality,
lambdaEquality,
because_Cache,
setElimination,
rename,
isectElimination,
functionEquality,
cumulativity,
universeEquality,
productEquality,
independent_pairFormation,
instantiate,
independent_isectElimination
Latex:
\mforall{}s:LOSet. \mforall{}g:AbDMon. (oal\_mcp(s;g) \mmember{} MCopower(s;g))
Date html generated:
2016_05_16-AM-08_23_05
Last ObjectModification:
2015_12_28-PM-06_28_57
Theory : polynom_2
Home
Index