Nuprl Lemma : oal_mcp_wf
∀s:LOSet. ∀g:AbDMon.  (oal_mcp(s;g) ∈ MCopower(s;g))
Proof
Definitions occuring in Statement : 
oal_mcp: oal_mcp(s;g)
, 
mcopower: MCopower(s;g)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
abdmonoid: AbDMon
, 
loset: LOSet
Definitions unfolded in proof : 
oal_mcp: oal_mcp(s;g)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
mcopower: MCopower(s;g)
, 
mcopower_sig: mcopower_sig{i:l}(s;g)
, 
subtype_rel: A ⊆r B
, 
loset: LOSet
, 
poset: POSet{i}
, 
qoset: QOSet
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
abdmonoid: AbDMon
, 
dmon: DMon
, 
mon: Mon
, 
oal_mon: oal_mon(a;b)
, 
grp_car: |g|
, 
pi1: fst(t)
, 
oalist: oal(a;b)
, 
dset_set: dset_set, 
mk_dset: mk_dset(T, eq)
, 
set_car: |p|
, 
dset_list: s List
, 
set_prod: s × t
, 
dset_of_mon: g↓set
, 
so_apply: x[s]
, 
abmonoid: AbMon
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
mcopower_mon: m.mon
, 
mcopower_inj: m.inj
, 
pi2: snd(t)
, 
dset: DSet
, 
mcopower_umap: m.umap
, 
tlambda: λx:T. b[x]
, 
prop: ℙ
, 
uimplies: b supposing a
, 
monoid_hom: MonHom(M1,M2)
Lemmas referenced : 
abdmonoid_wf, 
loset_wf, 
oal_mon_wf, 
abdmonoid_abmonoid, 
oal_inj_wf, 
mset_for_wf, 
abmonoid_subtype_iabmonoid, 
lookup_wf, 
grp_car_wf, 
grp_id_wf, 
oal_dom_wf, 
abmonoid_wf, 
set_car_wf, 
oal_inj_mon_hom, 
oal_umap_char, 
monoid_hom_wf, 
all_wf, 
monoid_hom_p_wf, 
mcopower_mon_wf, 
mcopower_inj_wf, 
uni_sat_wf, 
mcopower_umap_wf, 
subtype_rel_dep_function, 
equal_wf, 
compose_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
lemma_by_obid, 
dependent_set_memberEquality, 
dependent_pairEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
because_Cache, 
setElimination, 
rename, 
isectElimination, 
functionEquality, 
cumulativity, 
universeEquality, 
productEquality, 
independent_pairFormation, 
instantiate, 
independent_isectElimination
Latex:
\mforall{}s:LOSet.  \mforall{}g:AbDMon.    (oal\_mcp(s;g)  \mmember{}  MCopower(s;g))
Date html generated:
2016_05_16-AM-08_23_05
Last ObjectModification:
2015_12_28-PM-06_28_57
Theory : polynom_2
Home
Index