Nuprl Lemma : oalist_subtype

[a:LOSet]. ∀[b1,b2:AbDMon].  |oal(a;b1)| ⊆|oal(a;b2)| supposing strong-subtype(|b1|;|b2|) ∧ (e e ∈ |b2|)


Proof




Definitions occuring in Statement :  oalist: oal(a;b) strong-subtype: strong-subtype(A;B) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] and: P ∧ Q equal: t ∈ T abdmonoid: AbDMon grp_id: e grp_car: |g| loset: LOSet set_car: |p|
Definitions unfolded in proof :  subtype_rel: A ⊆B member: t ∈ T oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) dset_list: List set_prod: s × t dset_of_mon: g↓set and: P ∧ Q uall: [x:A]. B[x] loset: LOSet poset: POSet{i} qoset: QOSet dset: DSet abdmonoid: AbDMon dmon: DMon mon: Mon uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] strong-subtype: strong-subtype(A;B) cand: c∧ B not: ¬A implies:  Q false: False prop: guard: {T} pi2: snd(t) iff: ⇐⇒ Q rev_implies:  Q exists: x:A. B[x] int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top less_than: a < b squash: T
Lemmas referenced :  subtype_rel_list set_car_wf grp_car_wf subtype_rel_product assert_wf mem_wf dset_of_mon_wf map_wf set_prod_wf dset_of_mon_wf0 sd_ordered_wf not_wf oalist_wf dset_wf strong-subtype_wf equal_wf grp_id_wf abdmonoid_wf loset_wf mem_iff_exists select_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt length_wf pi2_wf intformless_wf int_formula_prop_less_lemma strong-subtype-implies
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality sqequalHypSubstitution sqequalRule setElimination thin rename dependent_set_memberEquality productElimination cut hypothesisEquality applyEquality introduction extract_by_obid isectElimination productEquality hypothesis because_Cache independent_isectElimination lambdaFormation independent_pairFormation independent_functionElimination voidElimination dependent_functionElimination equalityTransitivity equalitySymmetry isect_memberFormation axiomEquality isect_memberEquality dependent_pairFormation unionElimination natural_numberEquality int_eqEquality intEquality voidEquality computeAll independent_pairEquality imageElimination hyp_replacement applyLambdaEquality

Latex:
\mforall{}[a:LOSet].  \mforall{}[b1,b2:AbDMon].
    |oal(a;b1)|  \msubseteq{}r  |oal(a;b2)|  supposing  strong-subtype(|b1|;|b2|)  \mwedge{}  (e  =  e)



Date html generated: 2017_10_01-AM-10_01_38
Last ObjectModification: 2017_03_03-PM-01_05_09

Theory : polynom_2


Home Index