Nuprl Lemma : omral_dom_one
∀g:OCMon. ∀r:CDRng.  ((¬(0 = 1 ∈ |r|)) ⇒ (dom(11) = mset_inj{g↓oset}(e) ∈ FiniteSet{g↓oset}))
Proof
Definitions occuring in Statement : 
omral_one: 11, 
omral_dom: dom(ps), 
mset_inj: mset_inj{s}(x), 
finite_set: FiniteSet{s}, 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
equal: s = t ∈ T, 
cdrng: CDRng, 
rng_one: 1, 
rng_zero: 0, 
rng_car: |r|, 
oset_of_ocmon: g↓oset, 
ocmon: OCMon, 
grp_id: e
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
omral_one: 11, 
member: t ∈ T, 
squash: ↓T, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
ocmon: OCMon, 
omon: OMon, 
and: P ∧ Q, 
abmonoid: AbMon, 
mon: Mon, 
so_lambda: λ2x y.t[x; y], 
infix_ap: x f y, 
so_apply: x[s1;s2], 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
cdrng: CDRng, 
crng: CRng, 
rng: Rng, 
grp_car: |g|, 
pi1: fst(t), 
set_car: |p|, 
oset_of_ocmon: g↓oset, 
dset_of_mon: g↓set, 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
not: ¬A, 
false: False, 
bfalse: ff
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
finite_set_wf, 
oset_of_ocmon_wf, 
ulinorder_wf, 
grp_car_wf, 
assert_wf, 
grp_le_wf, 
bool_wf, 
grp_eq_wf, 
band_wf, 
qoset_subtype_dset, 
poset_subtype_qoset, 
loset_subtype_poset, 
subtype_rel_transitivity, 
loset_wf, 
poset_wf, 
qoset_wf, 
dset_wf, 
omral_dom_inj, 
grp_id_wf, 
rng_one_wf, 
mset_inj_wf_f, 
subtype_rel_self, 
set_car_wf, 
oset_of_ocmon_wf0, 
iff_weakening_equal, 
not_wf, 
rng_car_wf, 
rng_zero_wf, 
cdrng_wf, 
ocmon_wf, 
rng_eq_wf, 
uiff_transitivity, 
equal-wf-T-base, 
eqtt_to_assert, 
assert_of_rng_eq, 
cdrng_subtype_drng, 
iff_transitivity, 
bnot_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
productElimination, 
productEquality, 
because_Cache, 
functionEquality, 
instantiate, 
independent_isectElimination, 
dependent_functionElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
unionElimination, 
equalityElimination, 
voidElimination, 
independent_pairFormation, 
impliesFunctionality
Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.    ((\mneg{}(0  =  1))  {}\mRightarrow{}  (dom(11)  =  mset\_inj\{g\mdownarrow{}oset\}(e)))
Date html generated:
2018_05_22-AM-07_47_02
Last ObjectModification:
2018_05_19-AM-08_27_48
Theory : polynom_3
Home
Index