Nuprl Lemma : omral_dom_one

g:OCMon. ∀r:CDRng.  ((¬(0 1 ∈ |r|))  (dom(11) mset_inj{g↓oset}(e) ∈ FiniteSet{g↓oset}))


Proof




Definitions occuring in Statement :  omral_one: 11 omral_dom: dom(ps) mset_inj: mset_inj{s}(x) finite_set: FiniteSet{s} all: x:A. B[x] not: ¬A implies:  Q equal: t ∈ T cdrng: CDRng rng_one: 1 rng_zero: 0 rng_car: |r| oset_of_ocmon: g↓oset ocmon: OCMon grp_id: e
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q omral_one: 11 member: t ∈ T squash: T uall: [x:A]. B[x] prop: ocmon: OCMon omon: OMon and: P ∧ Q abmonoid: AbMon mon: Mon so_lambda: λ2y.t[x; y] infix_ap: y so_apply: x[s1;s2] subtype_rel: A ⊆B guard: {T} uimplies: supposing a cdrng: CDRng crng: CRng rng: Rng grp_car: |g| pi1: fst(t) set_car: |p| oset_of_ocmon: g↓oset dset_of_mon: g↓set true: True iff: ⇐⇒ Q rev_implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  not: ¬A false: False bfalse: ff
Lemmas referenced :  equal_wf squash_wf true_wf finite_set_wf oset_of_ocmon_wf ulinorder_wf grp_car_wf assert_wf grp_le_wf bool_wf grp_eq_wf band_wf qoset_subtype_dset poset_subtype_qoset loset_subtype_poset subtype_rel_transitivity loset_wf poset_wf qoset_wf dset_wf omral_dom_inj grp_id_wf rng_one_wf mset_inj_wf_f subtype_rel_self set_car_wf oset_of_ocmon_wf0 iff_weakening_equal not_wf rng_car_wf rng_zero_wf cdrng_wf ocmon_wf rng_eq_wf uiff_transitivity equal-wf-T-base eqtt_to_assert assert_of_rng_eq cdrng_subtype_drng iff_transitivity bnot_wf iff_weakening_uiff eqff_to_assert assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination introduction extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality setElimination rename dependent_set_memberEquality productElimination productEquality because_Cache functionEquality instantiate independent_isectElimination dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed independent_functionElimination unionElimination equalityElimination voidElimination independent_pairFormation impliesFunctionality

Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.    ((\mneg{}(0  =  1))  {}\mRightarrow{}  (dom(11)  =  mset\_inj\{g\mdownarrow{}oset\}(e)))



Date html generated: 2018_05_22-AM-07_47_02
Last ObjectModification: 2018_05_19-AM-08_27_48

Theory : polynom_3


Home Index