Nuprl Lemma : num-antecedents-fun_exp

[Info:Type]. ∀[es:EO+(Info)]. ∀[Sys:EClass(Top)]. ∀[f:sys-antecedent(es;Sys)]. ∀[n:ℕ]. ∀[e:E(Sys)].
  #f(f^n e) (#f(e) n) ∈ ℤ supposing n ≤ #f(e)


Proof




Definitions occuring in Statement :  num-antecedents: #f(e) sys-antecedent: sys-antecedent(es;Sys) es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) fun_exp: f^n nat: uimplies: supposing a uall: [x:A]. B[x] top: Top le: A ≤ B apply: a subtract: m int: universe: Type equal: t ∈ T
Lemmas :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf le_wf num-antecedents_wf es-E-interface_wf fun_exp0_lemma minus-zero add-zero decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le le-add-cancel es-eq-E_wf event-ordering+_subtype bool_wf eqtt_to_assert assert-es-eq-E-2 eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot es-E_wf nat_wf sys-antecedent_wf eclass_wf top_wf event-ordering+_wf not-le-2 le_antisymmetry_iff squash_wf true_wf fun_exp1_lemma fun_exp_add_sq fun_exp_wf le_weakening2
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[Sys:EClass(Top)].  \mforall{}[f:sys-antecedent(es;Sys)].  \mforall{}[n:\mBbbN{}].  \mforall{}[e:E(Sys)].
    \#f(f\^{}n  e)  =  (\#f(e)  -  n)  supposing  n  \mleq{}  \#f(e)



Date html generated: 2015_07_17-PM-00_55_07
Last ObjectModification: 2015_01_27-PM-10_49_15

Home Index