Nuprl Lemma : assert-ctt-term-is
∀s:Atom. ∀t:CttTerm.
  ((↑ctt-term-is(s;t))
  
⇒ {(¬↑isvarterm(t))
     ∧ (term-opr(t) = <"opid", s> ∈ CttOp)
     ∧ (||term-bts(t)|| = ||ctt-opid-arity(s)|| ∈ ℤ)
     ∧ (∀i:ℕ||term-bts(t)||
          ((||fst(term-bts(t)[i])|| = (fst(ctt-opid-arity(s)[i])) ∈ ℤ)
          ∧ (ctt-kind(snd(term-bts(t)[i])) = (snd(ctt-opid-arity(s)[i])) ∈ ℤ)))
     ∧ (t ~ mkwfterm(term-opr(t);term-bts(t)))})
Proof
Definitions occuring in Statement : 
ctt-term-is: ctt-term-is(s;t)
, 
ctt-term: CttTerm
, 
ctt-opid-arity: ctt-opid-arity(t)
, 
ctt-kind: ctt-kind(t)
, 
ctt-op: CttOp
, 
mkwfterm: mkwfterm(f;bts)
, 
term-bts: term-bts(t)
, 
term-opr: term-opr(t)
, 
isvarterm: isvarterm(t)
, 
select: L[n]
, 
length: ||as||
, 
int_seg: {i..j-}
, 
assert: ↑b
, 
guard: {T}
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
pair: <a, b>
, 
natural_number: $n
, 
int: ℤ
, 
token: "$token"
, 
atom: Atom
, 
sqequal: s ~ t
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
ctt-term: CttTerm
, 
wfterm: wfterm(opr;sort;arity)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
true: True
, 
subtype_rel: A ⊆r B
, 
coterm-fun: coterm-fun(opr;T)
, 
isvarterm: isvarterm(t)
, 
ctt-term-is: ctt-term-is(s;t)
, 
isl: isl(x)
, 
bnot: ¬bb
, 
bfalse: ff
, 
band: p ∧b q
, 
false: False
, 
mkterm: mkterm(opr;bts)
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
not: ¬A
, 
ctt-op: CttOp
, 
term-opr: term-opr(t)
, 
pi1: fst(t)
, 
outr: outr(x)
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
eq_atom: x =a y
, 
ctt-arity: ctt-arity(x)
, 
term-bts: term-bts(t)
, 
mkwfterm: mkwfterm(f;bts)
, 
pi2: snd(t)
, 
cand: A c∧ B
Lemmas referenced : 
assert_elim, 
wf-term_wf, 
ctt-op_wf, 
ctt-kind_wf, 
ctt-arity_wf, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
term-ext, 
subtype_rel_weakening, 
term_wf, 
coterm-fun_wf, 
ext-eq_inversion, 
istype-void, 
istype-assert, 
assert-wf-mkterm, 
ctt-term-is_wf, 
ctt-term_wf, 
istype-atom, 
term-opr_wf, 
isvarterm_wf, 
sq_stable__l_member, 
decidable__atom_equal, 
cons_wf, 
nil_wf, 
cons_member, 
atom_subtype_base, 
ctt-tokens_wf, 
assert_of_eq_atom, 
int_seg_wf, 
length_wf, 
list_wf, 
varname_wf, 
member_singleton
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
cut, 
hypothesis, 
introduction, 
extract_by_obid, 
isectElimination, 
instantiate, 
lambdaEquality_alt, 
hypothesisEquality, 
inhabitedIsType, 
universeIsType, 
independent_isectElimination, 
cumulativity, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
natural_numberEquality, 
applyEquality, 
sqequalRule, 
unionElimination, 
voidElimination, 
productElimination, 
dependent_set_memberEquality_alt, 
equalityIstype, 
atomEquality, 
tokenEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
because_Cache, 
independent_pairFormation, 
productEquality, 
independent_pairEquality, 
functionIsTypeImplies, 
axiomEquality, 
axiomSqEquality, 
equalityElimination
Latex:
\mforall{}s:Atom.  \mforall{}t:CttTerm.
    ((\muparrow{}ctt-term-is(s;t))
    {}\mRightarrow{}  \{(\mneg{}\muparrow{}isvarterm(t))
          \mwedge{}  (term-opr(t)  =  <"opid",  s>)
          \mwedge{}  (||term-bts(t)||  =  ||ctt-opid-arity(s)||)
          \mwedge{}  (\mforall{}i:\mBbbN{}||term-bts(t)||
                    ((||fst(term-bts(t)[i])||  =  (fst(ctt-opid-arity(s)[i])))
                    \mwedge{}  (ctt-kind(snd(term-bts(t)[i]))  =  (snd(ctt-opid-arity(s)[i])))))
          \mwedge{}  (t  \msim{}  mkwfterm(term-opr(t);term-bts(t)))\})
Date html generated:
2020_05_20-PM-08_23_13
Last ObjectModification:
2020_02_25-PM-02_45_17
Theory : cubical!type!theory
Home
Index