Nuprl Lemma : case-endpoints-0
∀[G:j⊢]. ∀[A:{G ⊢ _}]. ∀[a:{G ⊢ _:A}]. ∀[b:Top].  ([0(𝕀)=0 ⊢→ a; 0(𝕀)=1 ⊢→ b] = a ∈ {G ⊢ _:A})
Proof
Definitions occuring in Statement : 
case-endpoints: [r=0 ⊢→ a; r=1 ⊢→ b]
, 
interval-0: 0(𝕀)
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
case-endpoints: [r=0 ⊢→ a; r=1 ⊢→ b]
, 
case-term: (u ∨ v)
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
cubical-term: {X ⊢ _:A}
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
cubical-term-at: u(a)
, 
subtype_rel: A ⊆r B
, 
cubical-type-at: A(a)
, 
pi1: fst(t)
, 
face-type: 𝔽
, 
constant-cubical-type: (X)
, 
I_cube: A(I)
, 
functor-ob: ob(F)
, 
face-presheaf: 𝔽
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
face_lattice: face_lattice(I)
, 
face-lattice: face-lattice(T;eq)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
eq_atom: x =a y
, 
bfalse: ff
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
interval-0: 0(𝕀)
, 
face-zero: (i=0)
, 
dm-neg: ¬(x)
, 
lattice-extend: lattice-extend(L;eq;eqL;f;ac)
, 
lattice-fset-join: \/(s)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
fset-image: f"(s)
, 
f-union: f-union(domeq;rngeq;s;x.g[x])
, 
list_accum: list_accum, 
dM0: 0
, 
lattice-0: 0
, 
dM: dM(I)
, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
, 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n)
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
free-dist-lattice: free-dist-lattice(T; eq)
, 
empty-fset: {}
, 
nil: []
, 
opposite-lattice: opposite-lattice(L)
, 
lattice-1: 1
, 
fset-singleton: {x}
, 
cons: [a / b]
, 
dM1: 1
Lemmas referenced : 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
I_cube_wf, 
fset_wf, 
nat_wf, 
cubical-term-equal, 
istype-top, 
cubical-term_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
cubical-type_wf, 
cubical_set_wf, 
fl-eq_wf, 
cubical-term-at_wf, 
face-type_wf, 
face-zero_wf, 
interval-0_wf, 
subtype_rel_self, 
lattice-point_wf, 
face_lattice_wf, 
lattice-1_wf, 
eqtt_to_assert, 
assert-fl-eq, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
btrue_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
dM-to-FL-dM1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
equalitySymmetry, 
cut, 
functionExtensionality, 
sqequalRule, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesis, 
independent_isectElimination, 
dependent_functionElimination, 
equalityTransitivity, 
independent_functionElimination, 
applyEquality, 
setElimination, 
rename, 
hypothesisEquality, 
universeIsType, 
because_Cache, 
inhabitedIsType, 
lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
productElimination, 
lambdaEquality_alt, 
productEquality, 
isectEquality, 
dependent_pairFormation_alt, 
equalityIstype, 
promote_hyp, 
voidElimination
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A:\{G  \mvdash{}  \_\}].  \mforall{}[a:\{G  \mvdash{}  \_:A\}].  \mforall{}[b:Top].    ([0(\mBbbI{})=0  \mvdash{}\mrightarrow{}  a;  0(\mBbbI{})=1  \mvdash{}\mrightarrow{}  b]  =  a)
Date html generated:
2020_05_20-PM-04_15_32
Last ObjectModification:
2020_04_10-AM-04_46_05
Theory : cubical!type!theory
Home
Index