Nuprl Lemma : case-endpoints-0

[G:j⊢]. ∀[A:{G ⊢ _}]. ∀[a:{G ⊢ _:A}]. ∀[b:Top].  ([0(𝕀)=0 ⊢→ a; 0(𝕀)=1 ⊢→ b] a ∈ {G ⊢ _:A})


Proof




Definitions occuring in Statement :  case-endpoints: [r=0 ⊢→ a; r=1 ⊢→ b] interval-0: 0(𝕀) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] top: Top equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] case-endpoints: [r=0 ⊢→ a; r=1 ⊢→ b] case-term: (u ∨ v) member: t ∈ T uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} cubical-term: {X ⊢ _:A} ifthenelse: if then else fi  btrue: tt cubical-term-at: u(a) subtype_rel: A ⊆B cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] eq_atom: =a y bfalse: ff bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) and: P ∧ Q bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: so_apply: x[s] exists: x:A. B[x] or: P ∨ Q bnot: ¬bb assert: b false: False not: ¬A rev_implies:  Q iff: ⇐⇒ Q interval-0: 0(𝕀) face-zero: (i=0) dm-neg: ¬(x) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum dM0: 0 lattice-0: 0 dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) empty-fset: {} nil: [] opposite-lattice: opposite-lattice(L) lattice-1: 1 fset-singleton: {x} cons: [a b] dM1: 1
Lemmas referenced :  subtype_base_sq bool_wf bool_subtype_base I_cube_wf fset_wf nat_wf cubical-term-equal istype-top cubical-term_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cubical-type_wf cubical_set_wf fl-eq_wf cubical-term-at_wf face-type_wf face-zero_wf interval-0_wf subtype_rel_self lattice-point_wf face_lattice_wf lattice-1_wf eqtt_to_assert assert-fl-eq subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf btrue_wf eqff_to_assert bool_cases_sqequal assert-bnot iff_weakening_uiff assert_wf dM-to-FL-dM1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt equalitySymmetry cut functionExtensionality sqequalRule thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesis independent_isectElimination dependent_functionElimination equalityTransitivity independent_functionElimination applyEquality setElimination rename hypothesisEquality universeIsType because_Cache inhabitedIsType lambdaFormation_alt unionElimination equalityElimination productElimination lambdaEquality_alt productEquality isectEquality dependent_pairFormation_alt equalityIstype promote_hyp voidElimination

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A:\{G  \mvdash{}  \_\}].  \mforall{}[a:\{G  \mvdash{}  \_:A\}].  \mforall{}[b:Top].    ([0(\mBbbI{})=0  \mvdash{}\mrightarrow{}  a;  0(\mBbbI{})=1  \mvdash{}\mrightarrow{}  b]  =  a)



Date html generated: 2020_05_20-PM-04_15_32
Last ObjectModification: 2020_04_10-AM-04_46_05

Theory : cubical!type!theory


Home Index