Nuprl Lemma : case-term-same

[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma, phi ⊢ _}]. ∀[u:{Gamma, phi ⊢ _:A}].  ((u ∨ u) u ∈ {Gamma, phi ⊢ _:A})


Proof




Definitions occuring in Statement :  case-term: (u ∨ v) context-subset: Gamma, phi face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] case-term: (u ∨ v) cubical-term-at: u(a) member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A rev_implies:  Q iff: ⇐⇒ Q
Lemmas referenced :  fl-eq_wf cubical-term-at_wf context-subset_wf face-type_wf subset-cubical-term context-subset-is-subset subtype_rel_self lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf lattice-1_wf eqtt_to_assert assert-fl-eq eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf I_cube_wf fset_wf nat_wf cubical-term-equal cubical-term_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt equalitySymmetry cut functionExtensionality sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality independent_isectElimination because_Cache instantiate lambdaEquality_alt productEquality cumulativity isectEquality universeIsType setElimination rename inhabitedIsType equalityTransitivity lambdaFormation_alt unionElimination equalityElimination productElimination dependent_pairFormation_alt equalityIstype promote_hyp dependent_functionElimination independent_functionElimination voidElimination

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma,  phi  \mvdash{}  \_\}].  \mforall{}[u:\{Gamma,  phi  \mvdash{}  \_:A\}].    ((u  \mvee{}  u)  =  u)



Date html generated: 2020_05_20-PM-03_10_40
Last ObjectModification: 2020_04_06-PM-00_53_28

Theory : cubical!type!theory


Home Index