Nuprl Lemma : full-Pasch

e:EuclideanPlane. ∀a,x,y,d,p:Point.
  ((((d xa ∧ x-p-a) ∧ py) ∧ leftof xy)  (∃p':Point. ((x-p'-y ∨ a-p'-y) ∧ Colinear(d;p;p'))))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-lsep: bc geo-colinear: Colinear(a;b;c) geo-strict-between: a-b-c geo-left: leftof bc geo-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q
Definitions unfolded in proof :  so_apply: x[s1;s2;s3] so_lambda: so_lambda(x,y,z.t[x; y; z]) append: as bs so_apply: x[s] so_lambda: λ2x.t[x] rev_implies:  Q iff: ⇐⇒ Q subtract: m cons: [a b] select: L[n] true: True squash: T less_than: a < b not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} top: Top l_all: (∀x∈L.P[x]) geo-colinear-set: geo-colinear-set(e; L) basic-geometry-: BasicGeometry- oriented-plane: OrientedPlane exists: x:A. B[x] basic-geometry: BasicGeometry cand: c∧ B all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T geo-lsep: bc or: P ∨ Q prop: uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a
Lemmas referenced :  geo-colinear_wf or_wf list_ind_nil_lemma list_ind_cons_lemma exists_wf equal_wf l_member_wf cons_member nil_wf cons_wf oriented-colinear-append lelt_wf false_wf length_of_nil_lemma length_of_cons_lemma geo-strict-between-implies-colinear geo-colinear-is-colinear-set lsep-all-sym colinear-lsep-cycle geo-sep_wf left-convex2 geo-sep-sym left-between-implies-right1 geo-proper-extend-exists lsep-implies-sep geo-between_wf geo-strict-between-sep3 geo-between-symmetry geo-strict-between-implies-between left-convex full-Pasch-lemma left-symmetry geo-lsep_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-strict-between_wf geo-left_wf geo-point_wf
Rules used in proof :  lambdaEquality dependent_pairFormation baseClosed imageMemberEquality natural_numberEquality dependent_set_memberEquality voidEquality voidElimination isect_memberEquality inlFormation rename inrFormation independent_pairFormation sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid dependent_functionElimination hypothesisEquality because_Cache independent_functionElimination hypothesis unionElimination productEquality isectElimination applyEquality instantiate independent_isectElimination sqequalRule

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,x,y,d,p:Point.
    ((((d  \#  xa  \mwedge{}  x-p-a)  \mwedge{}  d  \#  py)  \mwedge{}  a  leftof  xy)
    {}\mRightarrow{}  (\mexists{}p':Point.  ((x-p'-y  \mvee{}  a-p'-y)  \mwedge{}  Colinear(d;p;p'))))



Date html generated: 2017_10_04-PM-10_10_20
Last ObjectModification: 2017_10_03-PM-02_53_23

Theory : euclidean!plane!geometry


Home Index