Nuprl Lemma : rv-unit-property
∀rv:InnerProductSpace. ∀x:Point.  (x # 0 
⇒ (∃t:ℝ. (t ≠ r0 ∧ rv-unit(rv;x) ≡ t*x)))
Proof
Definitions occuring in Statement : 
rv-unit: rv-unit(rv;x)
, 
inner-product-space: InnerProductSpace
, 
rv-mul: a*x
, 
rv-0: 0
, 
ss-eq: x ≡ y
, 
ss-sep: x # y
, 
ss-point: Point
, 
rneq: x ≠ y
, 
int-to-real: r(n)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
natural_number: $n
Definitions unfolded in proof : 
true: True
, 
less_than': less_than'(a;b)
, 
squash: ↓T
, 
less_than: a < b
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
prop: ℙ
, 
or: P ∨ Q
, 
guard: {T}
, 
rneq: x ≠ y
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
rv-unit: rv-unit(rv;x)
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
rmul-rdiv-cancel2, 
req_weakening, 
rmul-zero-both, 
rless_functionality, 
rv-ip_wf, 
req_wf, 
rleq_wf, 
real_wf, 
rmul_wf, 
rless-int, 
rmul_preserves_rless, 
ss-point_wf, 
rv-0_wf, 
ss-sep_wf, 
ss-eq_wf, 
rneq_wf, 
rv-mul_wf, 
separation-space_wf, 
real-vector-space_wf, 
inner-product-space_wf, 
subtype_rel_transitivity, 
inner-product-space_subtype, 
real-vector-space_subtype1, 
ss-eq_weakening, 
rless_wf, 
rv-norm_wf, 
int-to-real_wf, 
rdiv_wf, 
rv-norm-positive
Rules used in proof : 
addLevel, 
setEquality, 
rename, 
setElimination, 
lambdaEquality, 
baseClosed, 
imageMemberEquality, 
productElimination, 
productEquality, 
instantiate, 
independent_pairFormation, 
inrFormation, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
applyEquality, 
natural_numberEquality, 
isectElimination, 
dependent_pairFormation, 
hypothesis, 
independent_functionElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}x:Point.    (x  \#  0  {}\mRightarrow{}  (\mexists{}t:\mBbbR{}.  (t  \mneq{}  r0  \mwedge{}  rv-unit(rv;x)  \mequiv{}  t*x)))
Date html generated:
2016_11_08-AM-09_17_04
Last ObjectModification:
2016_10_31-PM-05_03_03
Theory : inner!product!spaces
Home
Index