Nuprl Lemma : rv-unit-property

rv:InnerProductSpace. ∀x:Point.  (x  (∃t:ℝ(t ≠ r0 ∧ rv-unit(rv;x) ≡ t*x)))


Proof




Definitions occuring in Statement :  rv-unit: rv-unit(rv;x) inner-product-space: InnerProductSpace rv-mul: a*x rv-0: 0 ss-eq: x ≡ y ss-sep: y ss-point: Point rneq: x ≠ y int-to-real: r(n) real: all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  true: True less_than': less_than'(a;b) squash: T less_than: a < b rev_implies:  Q iff: ⇐⇒ Q cand: c∧ B and: P ∧ Q prop: or: P ∨ Q guard: {T} rneq: x ≠ y uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] exists: x:A. B[x] rv-unit: rv-unit(rv;x) member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  rmul-rdiv-cancel2 req_weakening rmul-zero-both rless_functionality rv-ip_wf req_wf rleq_wf real_wf rmul_wf rless-int rmul_preserves_rless ss-point_wf rv-0_wf ss-sep_wf ss-eq_wf rneq_wf rv-mul_wf separation-space_wf real-vector-space_wf inner-product-space_wf subtype_rel_transitivity inner-product-space_subtype real-vector-space_subtype1 ss-eq_weakening rless_wf rv-norm_wf int-to-real_wf rdiv_wf rv-norm-positive
Rules used in proof :  addLevel setEquality rename setElimination lambdaEquality baseClosed imageMemberEquality productElimination productEquality instantiate independent_pairFormation inrFormation independent_isectElimination sqequalRule because_Cache applyEquality natural_numberEquality isectElimination dependent_pairFormation hypothesis independent_functionElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}x:Point.    (x  \#  0  {}\mRightarrow{}  (\mexists{}t:\mBbbR{}.  (t  \mneq{}  r0  \mwedge{}  rv-unit(rv;x)  \mequiv{}  t*x)))



Date html generated: 2016_11_08-AM-09_17_04
Last ObjectModification: 2016_10_31-PM-05_03_03

Theory : inner!product!spaces


Home Index