Nuprl Lemma : finite-powerset-lattice_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[whole:fset(T)].
  finite-powerset-lattice(T;eq;whole) ∈ BoundedDistributiveLattice supposing ∀x:T. x ∈ whole
Proof
Definitions occuring in Statement : 
finite-powerset-lattice: finite-powerset-lattice(T;eq;whole), 
bdd-distributive-lattice: BoundedDistributiveLattice, 
fset-member: a ∈ s, 
fset: fset(T), 
deq: EqDecider(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
finite-powerset-lattice: finite-powerset-lattice(T;eq;whole), 
and: P ∧ Q, 
cand: A c∧ B, 
so_apply: x[s1;s2], 
squash: ↓T, 
prop: ℙ, 
true: True, 
subtype_rel: A ⊆r B, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
fset-union: x ⋃ y, 
l-union: as ⋃ bs, 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
empty-fset: {}, 
nil: [], 
it: ⋅, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uiff: uiff(P;Q), 
all: ∀x:A. B[x]
Lemmas referenced : 
mk-bounded-distributive-lattice_wf, 
fset_wf, 
fset-intersection_wf, 
fset-union_wf, 
empty-fset_wf, 
equal_wf, 
squash_wf, 
true_wf, 
fset-intersection-commutes, 
iff_weakening_equal, 
fset-union-commutes, 
fset-intersection-associative, 
fset-union-associative, 
fset-absorption1, 
fset-absorption2, 
fset-distributive, 
all_wf, 
fset-member_wf, 
deq_wf, 
fset-extensionality, 
fset-member_witness, 
iff_weakening_uiff, 
member-fset-intersection, 
uiff_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
because_Cache, 
independent_isectElimination, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
productElimination, 
independent_functionElimination, 
isect_memberEquality, 
axiomEquality, 
independent_pairFormation, 
productEquality, 
independent_pairEquality, 
addLevel, 
dependent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[whole:fset(T)].
    finite-powerset-lattice(T;eq;whole)  \mmember{}  BoundedDistributiveLattice  supposing  \mforall{}x:T.  x  \mmember{}  whole
Date html generated:
2017_10_05-AM-00_36_34
Last ObjectModification:
2017_07_28-AM-09_15_04
Theory : lattices
Home
Index