Nuprl Lemma : finite-powerset-lattice_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[whole:fset(T)].
  finite-powerset-lattice(T;eq;whole) ∈ BoundedDistributiveLattice supposing ∀x:T. x ∈ whole


Proof




Definitions occuring in Statement :  finite-powerset-lattice: finite-powerset-lattice(T;eq;whole) bdd-distributive-lattice: BoundedDistributiveLattice fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a finite-powerset-lattice: finite-powerset-lattice(T;eq;whole) and: P ∧ Q cand: c∧ B so_apply: x[s1;s2] squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q fset-union: x ⋃ y l-union: as ⋃ bs reduce: reduce(f;k;as) list_ind: list_ind empty-fset: {} nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) all: x:A. B[x]
Lemmas referenced :  mk-bounded-distributive-lattice_wf fset_wf fset-intersection_wf fset-union_wf empty-fset_wf equal_wf squash_wf true_wf fset-intersection-commutes iff_weakening_equal fset-union-commutes fset-intersection-associative fset-union-associative fset-absorption1 fset-absorption2 fset-distributive all_wf fset-member_wf deq_wf fset-extensionality fset-member_witness iff_weakening_uiff member-fset-intersection uiff_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis lambdaEquality because_Cache independent_isectElimination applyEquality imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality baseClosed universeEquality productElimination independent_functionElimination isect_memberEquality axiomEquality independent_pairFormation productEquality independent_pairEquality addLevel dependent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[whole:fset(T)].
    finite-powerset-lattice(T;eq;whole)  \mmember{}  BoundedDistributiveLattice  supposing  \mforall{}x:T.  x  \mmember{}  whole



Date html generated: 2017_10_05-AM-00_36_34
Last ObjectModification: 2017_07_28-AM-09_15_04

Theory : lattices


Home Index