Nuprl Lemma : rat-complex-diameter-bound
∀[k:ℕ]. ∀[K:ℚCube(k) List].
  ∀[x,y:ℝ^k].
    mdist(rn-prod-metric(k);x;y) ≤ rat-complex-diameter(k;K) 
    supposing ¬¬(∃c:ℚCube(k). ((c ∈ K) ∧ in-rat-cube(k;y;c) ∧ in-rat-cube(k;x;c))) 
  supposing 0 < ||K||
Proof
Definitions occuring in Statement : 
rat-complex-diameter: rat-complex-diameter(k;K), 
in-rat-cube: in-rat-cube(k;p;c), 
rn-prod-metric: rn-prod-metric(n), 
real-vec: ℝ^n, 
mdist: mdist(d;x;y), 
rleq: x ≤ y, 
l_member: (x ∈ l), 
length: ||as||, 
list: T List, 
nat: ℕ, 
less_than: a < b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
exists: ∃x:A. B[x], 
not: ¬A, 
and: P ∧ Q, 
natural_number: $n, 
rational-cube: ℚCube(k)
Definitions unfolded in proof : 
so_apply: x[s], 
top: Top, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
decidable: Dec(P), 
ge: i ≥ j , 
less_than: a < b, 
lelt: i ≤ j < k, 
int_seg: {i..j-}, 
so_lambda: λ2x.t[x], 
nat: ℕ, 
rat-complex-diameter: rat-complex-diameter(k;K), 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
subtype_rel: A ⊆r B, 
squash: ↓T, 
guard: {T}, 
rge: x ≥ y, 
rev_uimplies: rev_uimplies(P;Q), 
true: True, 
cand: A c∧ B, 
l_member: (x ∈ l), 
stable: Stable{P}, 
or: P ∨ Q, 
false: False, 
prop: ℙ, 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
not: ¬A, 
and: P ∧ Q, 
le: A ≤ B, 
all: ∀x:A. B[x], 
rnonneg: rnonneg(x), 
rleq: x ≤ y, 
uimplies: b supposing a, 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
int_seg_wf, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
int_formula_prop_less_lemma, 
itermSubtract_wf, 
itermAdd_wf, 
intformless_wf, 
istype-le, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
istype-int, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
int_seg_properties, 
select_wf, 
subtract_wf, 
rmaximum_ub, 
iff_weakening_equal, 
subtype_rel_self, 
real_wf, 
true_wf, 
squash_wf, 
rleq_weakening_equal, 
rleq_functionality_wrt_implies, 
rat-cube-diameter_wf, 
rat-cube-diameter-bound, 
minimal-not-not-excluded-middle, 
minimal-double-negation-hyp-elim, 
rleq_wf, 
not_wf, 
false_wf, 
rat-complex-diameter_wf, 
rn-prod-metric_wf, 
mdist_wf, 
stable__rleq, 
istype-nat, 
list_wf, 
length_wf, 
istype-less_than, 
real-vec_wf, 
istype-void, 
in-rat-cube_wf, 
l_member_wf, 
rational-cube_wf, 
le_witness_for_triv
Rules used in proof : 
addEquality, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
int_eqEquality, 
dependent_pairFormation_alt, 
approximateComputation, 
rename, 
setElimination, 
universeEquality, 
instantiate, 
baseClosed, 
imageMemberEquality, 
imageElimination, 
applyEquality, 
unionElimination, 
lambdaFormation_alt, 
because_Cache, 
unionIsType, 
voidElimination, 
independent_functionElimination, 
functionEquality, 
productEquality, 
unionEquality, 
natural_numberEquality, 
isectIsTypeImplies, 
isect_memberEquality_alt, 
universeIsType, 
productIsType, 
functionIsType, 
inhabitedIsType, 
functionIsTypeImplies, 
independent_isectElimination, 
equalitySymmetry, 
hypothesis, 
equalityTransitivity, 
productElimination, 
isectElimination, 
extract_by_obid, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[K:\mBbbQ{}Cube(k)  List].
    \mforall{}[x,y:\mBbbR{}\^{}k].
        mdist(rn-prod-metric(k);x;y)  \mleq{}  rat-complex-diameter(k;K) 
        supposing  \mneg{}\mneg{}(\mexists{}c:\mBbbQ{}Cube(k).  ((c  \mmember{}  K)  \mwedge{}  in-rat-cube(k;y;c)  \mwedge{}  in-rat-cube(k;x;c))) 
    supposing  0  <  ||K||
Date html generated:
2019_11_04-PM-04_43_53
Last ObjectModification:
2019_10_31-PM-00_01_29
Theory : real!vectors
Home
Index