Nuprl Lemma : cantor-interval-inclusion2

[a,b:ℝ].
  ∀[m:ℕ]. ∀[n:ℕm]. ∀[f:ℕm ⟶ 𝔹].
    (((fst(cantor-interval(a;b;f;n))) ≤ (fst(cantor-interval(a;b;f;m))))
    ∧ ((fst(cantor-interval(a;b;f;m))) ≤ (snd(cantor-interval(a;b;f;m))))
    ∧ ((snd(cantor-interval(a;b;f;m))) ≤ (snd(cantor-interval(a;b;f;n))))) 
  supposing a ≤ b


Proof




Definitions occuring in Statement :  cantor-interval: cantor-interval(a;b;f;n) rleq: x ≤ y real: int_seg: {i..j-} nat: bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) and: P ∧ Q function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B prop: bfalse: ff subtype_rel: A ⊆B less_than': less_than'(a;b) false: False not: ¬A int_upper: {i...} guard: {T} ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top squash: T sq_type: SQType(T) bnot: ¬bb assert: b true: True so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  cantor-interval-inclusion lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int lelt_wf equal_wf int_seg_subtype_nat false_wf int_seg_properties nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf rleq_wf squash_wf true_wf pi1_wf_top cantor-interval_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf int_seg_wf pi2_wf nat_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis lambdaEquality setElimination rename because_Cache lambdaFormation unionElimination equalityElimination sqequalRule productElimination applyEquality functionExtensionality dependent_set_memberEquality independent_pairFormation equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination natural_numberEquality dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll promote_hyp hyp_replacement imageElimination instantiate cumulativity imageMemberEquality baseClosed functionEquality

Latex:
\mforall{}[a,b:\mBbbR{}].
    \mforall{}[m:\mBbbN{}].  \mforall{}[n:\mBbbN{}m].  \mforall{}[f:\mBbbN{}m  {}\mrightarrow{}  \mBbbB{}].
        (((fst(cantor-interval(a;b;f;n)))  \mleq{}  (fst(cantor-interval(a;b;f;m))))
        \mwedge{}  ((fst(cantor-interval(a;b;f;m)))  \mleq{}  (snd(cantor-interval(a;b;f;m))))
        \mwedge{}  ((snd(cantor-interval(a;b;f;m)))  \mleq{}  (snd(cantor-interval(a;b;f;n))))) 
    supposing  a  \mleq{}  b



Date html generated: 2017_10_03-AM-09_51_42
Last ObjectModification: 2017_07_28-AM-08_01_49

Theory : reals


Home Index