Nuprl Lemma : frs-increasing-cons
∀p:ℝ List. ∀c:ℝ.  (frs-increasing([c / p]) ⇐⇒ (0 < ||p|| ⇒ (c < p[0])) ∧ frs-increasing(p))
Proof
Definitions occuring in Statement : 
frs-increasing: frs-increasing(p), 
rless: x < y, 
real: ℝ, 
select: L[n], 
length: ||as||, 
cons: [a / b], 
list: T List, 
less_than: a < b, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
and: P ∧ Q, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
rev_implies: P ⇐ Q, 
uimplies: b supposing a, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
guard: {T}, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
l_all: (∀x∈L.P[x]), 
decidable: Dec(P), 
or: P ∨ Q, 
less_than: a < b, 
squash: ↓T, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
sq_type: SQType(T), 
sorted-by: sorted-by(R;L), 
rless: x < y, 
sq_exists: ∃x:{A| B[x]}, 
nat_plus: ℕ+, 
real: ℝ, 
subtype_rel: A ⊆r B, 
sq_stable: SqStable(P)
Lemmas referenced : 
less_than_wf, 
length_wf, 
real_wf, 
sorted-by_wf, 
l_member_wf, 
rless_wf, 
l_all_wf2, 
select_wf, 
false_wf, 
sorted-by-cons, 
cons_wf, 
iff_wf, 
frs-increasing-sorted-by, 
frs-increasing_wf, 
list_wf, 
lelt_wf, 
int_seg_wf, 
int_seg_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
nat_plus_properties, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
rless_transitivity2, 
sq_stable__less_than, 
decidable__le, 
rleq_weakening_rless
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
introduction, 
extract_by_obid, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
productEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
because_Cache, 
dependent_functionElimination, 
functionEquality, 
independent_isectElimination, 
addLevel, 
impliesFunctionality, 
independent_functionElimination, 
andLevelFunctionality, 
dependent_set_memberEquality, 
unionElimination, 
imageElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
instantiate, 
cumulativity, 
addEquality, 
applyEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}p:\mBbbR{}  List.  \mforall{}c:\mBbbR{}.    (frs-increasing([c  /  p])  \mLeftarrow{}{}\mRightarrow{}  (0  <  ||p||  {}\mRightarrow{}  (c  <  p[0]))  \mwedge{}  frs-increasing(p))
 Date html generated: 
2016_10_26-AM-09_33_00
 Last ObjectModification: 
2016_08_14-PM-01_14_23
Theory : reals
Home
Index