Nuprl Lemma : frs-mesh_wf

[p:ℝ List]. (frs-mesh(p) ∈ ℝ)


Proof




Definitions occuring in Statement :  frs-mesh: frs-mesh(p) real: list: List uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T frs-mesh: frs-mesh(p) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff guard: {T} le: A ≤ B decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: so_lambda: λ2x.t[x] int_seg: {i..j-} lelt: i ≤ j < k so_apply: x[s]
Lemmas referenced :  lt_int_wf length_wf real_wf bool_wf uiff_transitivity equal-wf-T-base assert_wf less_than_wf eqtt_to_assert assert_of_lt_int int-to-real_wf le_int_wf le_wf bnot_wf eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int rmaximum_wf subtract_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_wf rsub_wf select_wf int_seg_properties itermAdd_wf int_term_value_add_lemma decidable__lt intformless_wf int_formula_prop_less_lemma int_seg_wf equal_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality natural_numberEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry baseClosed independent_functionElimination because_Cache productElimination independent_isectElimination dependent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll addEquality setElimination rename axiomEquality

Latex:
\mforall{}[p:\mBbbR{}  List].  (frs-mesh(p)  \mmember{}  \mBbbR{})



Date html generated: 2017_10_03-AM-09_35_54
Last ObjectModification: 2017_07_28-AM-07_53_40

Theory : reals


Home Index