Nuprl Lemma : fun-cauchy_wf
∀[I:Interval]. ∀[f:ℕ ⟶ I ⟶ℝ]. (λn.f[n;x] is cauchy for x ∈ I ∈ ℙ)
Proof
Definitions occuring in Statement :
fun-cauchy: λn.f[n; x] is cauchy for x ∈ I
,
rfun: I ⟶ℝ
,
interval: Interval
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s1;s2]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
implies: P
⇒ Q
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
fun-cauchy: λn.f[n; x] is cauchy for x ∈ I
,
so_lambda: λ2x.t[x]
,
nat_plus: ℕ+
,
so_apply: x[s1;s2]
,
subtype_rel: A ⊆r B
,
rfun: I ⟶ℝ
,
uimplies: b supposing a
,
rneq: x ≠ y
,
guard: {T}
,
or: P ∨ Q
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
int_upper: {i...}
,
decidable: Dec(P)
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
not: ¬A
,
top: Top
,
so_apply: x[s]
Lemmas referenced :
interval_wf,
nat_wf,
rless_wf,
int_formula_prop_wf,
int_term_value_var_lemma,
int_term_value_constant_lemma,
int_formula_prop_less_lemma,
int_formula_prop_not_lemma,
int_formula_prop_and_lemma,
itermVar_wf,
itermConstant_wf,
intformless_wf,
intformnot_wf,
intformand_wf,
satisfiable-full-omega-tt,
decidable__lt,
nat_plus_properties,
int_upper_properties,
rless-int,
int-to-real_wf,
rdiv_wf,
rfun_wf,
nat_plus_subtype_nat,
int_upper_subtype_nat,
rsub_wf,
rabs_wf,
rleq_wf,
int_upper_wf,
real_wf,
exists_wf,
i-approx_wf,
icompact_wf,
nat_plus_wf,
all_wf,
i-member_wf,
i-member-approx
Rules used in proof :
cut,
lemma_by_obid,
sqequalHypSubstitution,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
dependent_functionElimination,
thin,
hypothesisEquality,
independent_functionElimination,
hypothesis,
dependent_set_memberEquality,
because_Cache,
isectElimination,
isect_memberFormation,
introduction,
sqequalRule,
setEquality,
lambdaEquality,
lambdaFormation,
setElimination,
rename,
applyEquality,
natural_numberEquality,
independent_isectElimination,
inrFormation,
productElimination,
unionElimination,
dependent_pairFormation,
int_eqEquality,
intEquality,
isect_memberEquality,
voidElimination,
voidEquality,
independent_pairFormation,
computeAll,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
functionEquality
Latex:
\mforall{}[I:Interval]. \mforall{}[f:\mBbbN{} {}\mrightarrow{} I {}\mrightarrow{}\mBbbR{}]. (\mlambda{}n.f[n;x] is cauchy for x \mmember{} I \mmember{} \mBbbP{})
Date html generated:
2016_05_18-AM-09_53_09
Last ObjectModification:
2016_01_17-AM-02_53_05
Theory : reals
Home
Index