Nuprl Lemma : r-archimedean-implies2
∀x:ℝ. ∀d:{d:ℝ| r0 < d} .  ∃M:ℕ+. ((x/r(M)) ≤ d)
Proof
Definitions occuring in Statement : 
rdiv: (x/y), 
rleq: x ≤ y, 
rless: x < y, 
int-to-real: r(n), 
real: ℝ, 
nat_plus: ℕ+, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
set: {x:A| B[x]} , 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
exists: ∃x:A. B[x], 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
nat_plus: ℕ+, 
uimplies: b supposing a, 
rneq: x ≠ y, 
guard: {T}, 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
rless: x < y, 
sq_exists: ∃x:{A| B[x]}, 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
not: ¬A, 
top: Top, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
small-reciprocal-real, 
r-archimedean-implies, 
rleq_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
nat_plus_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rless_wf, 
set_wf, 
real_wf, 
rmul_preserves_req, 
rmul_wf, 
req_wf, 
req_weakening, 
rless_transitivity2, 
rleq_weakening_rless, 
uiff_transitivity, 
req_functionality, 
req_inversion, 
rmul-assoc, 
rmul_functionality, 
rmul_comm, 
rmul-ac, 
rmul-rdiv-cancel, 
rmul-rdiv-cancel2, 
rmul-one-both, 
rleq_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
dependent_pairFormation, 
isectElimination, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
inrFormation, 
independent_functionElimination, 
natural_numberEquality, 
unionElimination, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll
Latex:
\mforall{}x:\mBbbR{}.  \mforall{}d:\{d:\mBbbR{}|  r0  <  d\}  .    \mexists{}M:\mBbbN{}\msupplus{}.  ((x/r(M))  \mleq{}  d)
Date html generated:
2016_10_26-AM-09_21_54
Last ObjectModification:
2016_08_19-PM-00_50_19
Theory : reals
Home
Index