Nuprl Lemma : r-archimedean-implies2

x:ℝ. ∀d:{d:ℝr0 < d} .  ∃M:ℕ+((x/r(M)) ≤ d)


Proof




Definitions occuring in Statement :  rdiv: (x/y) rleq: x ≤ y rless: x < y int-to-real: r(n) real: nat_plus: + all: x:A. B[x] exists: x:A. B[x] set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T exists: x:A. B[x] prop: uall: [x:A]. B[x] nat_plus: + uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q rless: x < y sq_exists: x:{A| B[x]} decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  small-reciprocal-real r-archimedean-implies rleq_wf rdiv_wf int-to-real_wf rless-int nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf set_wf real_wf rmul_preserves_req rmul_wf req_wf req_weakening rless_transitivity2 rleq_weakening_rless uiff_transitivity req_functionality req_inversion rmul-assoc rmul_functionality rmul_comm rmul-ac rmul-rdiv-cancel rmul-rdiv-cancel2 rmul-one-both rleq_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination dependent_pairFormation isectElimination setElimination rename because_Cache hypothesis independent_isectElimination sqequalRule inrFormation independent_functionElimination natural_numberEquality unionElimination lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll

Latex:
\mforall{}x:\mBbbR{}.  \mforall{}d:\{d:\mBbbR{}|  r0  <  d\}  .    \mexists{}M:\mBbbN{}\msupplus{}.  ((x/r(M))  \mleq{}  d)



Date html generated: 2016_10_26-AM-09_21_54
Last ObjectModification: 2016_08_19-PM-00_50_19

Theory : reals


Home Index