Nuprl Lemma : r-strict-bound-property

x:ℝ((r(-(r-bound(x) 1)) < x) ∧ (x < r(r-bound(x) 1)))


Proof




Definitions occuring in Statement :  r-bound: r-bound(x) rless: x < y int-to-real: r(n) real: all: x:A. B[x] and: P ∧ Q add: m minus: -n natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B top: Top subtype_rel: A ⊆B nat_plus: + rev_implies:  Q uimplies: supposing a rge: x ≥ y guard: {T} implies:  Q prop: iff: ⇐⇒ Q less_than: a < b squash: T less_than': less_than'(a;b) true: True uiff: uiff(P;Q)
Lemmas referenced :  r-bound-property real_wf minus-add int-to-real_wf r-bound_wf nat_plus_wf radd_wf rless_functionality_wrt_implies rleq_weakening req_inversion radd-int equal_wf radd-preserves-rless rminus_wf rless-int rmul_wf rless_wf rless_functionality radd-zero-both req_weakening radd_comm radd_functionality rmul-zero-both rmul_functionality req_transitivity rminus-as-rmul radd-assoc rmul-identity1 rmul-distrib2 trivial-rless-radd
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination independent_pairFormation isect_memberEquality voidElimination voidEquality addEquality minusEquality applyEquality lambdaEquality setElimination rename sqequalRule natural_numberEquality because_Cache dependent_functionElimination independent_isectElimination independent_functionElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed addLevel levelHypothesis

Latex:
\mforall{}x:\mBbbR{}.  ((r(-(r-bound(x)  +  1))  <  x)  \mwedge{}  (x  <  r(r-bound(x)  +  1)))



Date html generated: 2017_10_03-AM-08_53_12
Last ObjectModification: 2017_07_28-AM-07_35_49

Theory : reals


Home Index