Nuprl Lemma : rabs-nonneg

[x:ℝ]. rnonneg(|x|)


Proof




Definitions occuring in Statement :  rnonneg: rnonneg(x) rabs: |x| real: uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q rnonneg2: rnonneg2(x) all: x:A. B[x] rabs: |x| exists: x:A. B[x] nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True prop: so_lambda: λ2x.t[x] int_upper: {i...} real: le: A ≤ B guard: {T} uimplies: supposing a subtype_rel: A ⊆B so_apply: x[s] rnonneg: rnonneg(x) not: ¬A false: False decidable: Dec(P) or: P ∨ Q uiff: uiff(P;Q) top: Top satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced :  int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf itermMultiply_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_plus_properties int_upper_properties nat_plus_subtype_nat mul_preserves_le le-add-cancel zero-add add-commutes add_functionality_wrt_le not-lt-2 false_wf decidable__lt absval-non-neg real_wf less_than'_wf nat_plus_wf less_than_transitivity1 absval_wf le_wf all_wf int_upper_wf less_than_wf rabs_wf rnonneg-iff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination independent_functionElimination lambdaFormation sqequalRule dependent_pairFormation dependent_set_memberEquality natural_numberEquality independent_pairFormation imageMemberEquality baseClosed setElimination rename lambdaEquality multiplyEquality minusEquality applyEquality because_Cache independent_isectElimination dependent_functionElimination independent_pairEquality voidElimination axiomEquality equalityTransitivity equalitySymmetry unionElimination isect_memberEquality voidEquality intEquality int_eqEquality computeAll

Latex:
\mforall{}[x:\mBbbR{}].  rnonneg(|x|)



Date html generated: 2016_05_18-AM-07_02_41
Last ObjectModification: 2016_01_17-AM-01_49_48

Theory : reals


Home Index