Nuprl Lemma : real-vec-norm-is-0
∀[n:ℕ]. ∀[x:ℝ^n].  uiff(||x|| = r0;req-vec(n;x;λi.r0))
Proof
Definitions occuring in Statement : 
real-vec-norm: ||x||
, 
req-vec: req-vec(n;x;y)
, 
real-vec: ℝ^n
, 
req: x = y
, 
int-to-real: r(n)
, 
nat: ℕ
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
lambda: λx.A[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
req-vec: req-vec(n;x;y)
, 
all: ∀x:A. B[x]
, 
real-vec: ℝ^n
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
nat: ℕ
, 
iff: P 
⇐⇒ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
cand: A c∧ B
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
dot-product: x⋅y
Lemmas referenced : 
req_witness, 
int-to-real_wf, 
req_wf, 
real-vec-norm_wf, 
req-vec_wf, 
int_seg_wf, 
real-vec_wf, 
istype-nat, 
rabs-is-zero, 
rleq_antisymmetry, 
rabs_wf, 
zero-rleq-rabs, 
component-rleq-real-vec-norm, 
rleq_functionality, 
req_weakening, 
req_inversion, 
dot-product_functionality, 
req_functionality, 
le_wf, 
false_wf, 
rnexp_wf, 
dot-product_wf, 
rleq_weakening_equal, 
real-vec-norm-eq-iff, 
rsum-constant, 
rmul_wf, 
subtract_wf, 
rsum_wf, 
rmul-zero-both, 
rmul-int, 
rmul_functionality, 
uiff_transitivity, 
rnexp2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality_alt, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
extract_by_obid, 
isectElimination, 
applyEquality, 
closedConclusion, 
natural_numberEquality, 
hypothesis, 
independent_functionElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
universeIsType, 
setElimination, 
rename, 
productElimination, 
independent_pairEquality, 
isect_memberEquality_alt, 
because_Cache, 
isectIsTypeImplies, 
lambdaFormation_alt, 
independent_isectElimination, 
lambdaFormation, 
dependent_set_memberEquality, 
lambdaEquality, 
addEquality, 
multiplyEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x:\mBbbR{}\^{}n].    uiff(||x||  =  r0;req-vec(n;x;\mlambda{}i.r0))
Date html generated:
2019_10_30-AM-08_07_34
Last ObjectModification:
2019_06_26-PM-00_48_18
Theory : reals
Home
Index