Nuprl Lemma : real-vec-norm-is-0

[n:ℕ]. ∀[x:ℝ^n].  uiff(||x|| r0;req-vec(n;x;λi.r0))


Proof




Definitions occuring in Statement :  real-vec-norm: ||x|| req-vec: req-vec(n;x;y) real-vec: ^n req: y int-to-real: r(n) nat: uiff: uiff(P;Q) uall: [x:A]. B[x] lambda: λx.A[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a req-vec: req-vec(n;x;y) all: x:A. B[x] real-vec: ^n implies:  Q prop: int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B nat: iff: ⇐⇒ Q rev_uimplies: rev_uimplies(P;Q) not: ¬A false: False less_than': less_than'(a;b) cand: c∧ B so_apply: x[s] so_lambda: λ2x.t[x] dot-product: x⋅y
Lemmas referenced :  req_witness int-to-real_wf req_wf real-vec-norm_wf req-vec_wf int_seg_wf real-vec_wf istype-nat rabs-is-zero rleq_antisymmetry rabs_wf zero-rleq-rabs component-rleq-real-vec-norm rleq_functionality req_weakening req_inversion dot-product_functionality req_functionality le_wf false_wf rnexp_wf dot-product_wf rleq_weakening_equal real-vec-norm-eq-iff rsum-constant rmul_wf subtract_wf rsum_wf rmul-zero-both rmul-int rmul_functionality uiff_transitivity rnexp2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut independent_pairFormation sqequalRule sqequalHypSubstitution lambdaEquality_alt dependent_functionElimination thin hypothesisEquality extract_by_obid isectElimination applyEquality closedConclusion natural_numberEquality hypothesis independent_functionElimination functionIsTypeImplies inhabitedIsType universeIsType setElimination rename productElimination independent_pairEquality isect_memberEquality_alt because_Cache isectIsTypeImplies lambdaFormation_alt independent_isectElimination lambdaFormation dependent_set_memberEquality lambdaEquality addEquality multiplyEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x:\mBbbR{}\^{}n].    uiff(||x||  =  r0;req-vec(n;x;\mlambda{}i.r0))



Date html generated: 2019_10_30-AM-08_07_34
Last ObjectModification: 2019_06_26-PM-00_48_18

Theory : reals


Home Index