Nuprl Lemma : monad-of-Kleisli-adjunction
∀[C:SmallCategory]. ∀[M:Monad(C)].  (adjMonad(Kl(C;M)) = M ∈ Monad(C))
Proof
Definitions occuring in Statement : 
Kleisli-adjunction: Kl(C;M)
, 
Kleisli-right: KlG(C;M)
, 
Kleisli-left: KlF(C;M)
, 
Kleisli-cat: Kl(C;M)
, 
adjunction-monad: adjMonad(adj)
, 
cat-monad: Monad(C)
, 
small-category: SmallCategory
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
monad-unit: monad-unit(M;x)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
adjunction-monad: adjMonad(adj)
, 
mk-monad: mk-monad(T;u;m)
, 
Kleisli-adjunction: Kl(C;M)
, 
mk-adjunction: mk-adjunction(b.eps[b];a.eta[a])
, 
mk-nat-trans: x |→ T[x]
, 
monad-functor: monad-functor(M)
, 
Kleisli-right: KlG(C;M)
, 
Kleisli-left: KlF(C;M)
, 
functor-comp: functor-comp(F;G)
, 
top: Top
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
monad-fun: M(x)
, 
cat_comp: g o f
, 
monad-extend: monad-extend(C;M;x;y;f)
, 
subtype_rel: A ⊆r B
, 
true: True
, 
squash: ↓T
, 
prop: ℙ
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
monad-op: monad-op(M;x)
Lemmas referenced : 
equal-monads, 
adjunction-monad_wf, 
Kleisli-cat_wf, 
Kleisli-left_wf, 
Kleisli-right_wf, 
Kleisli-adjunction_wf, 
monad-unit_wf, 
cat-monad_wf, 
small-category_wf, 
monad-functor_wf, 
cat-ob_wf, 
cat-arrow_wf, 
equal-functors, 
ob_mk_functor_lemma, 
monad-fun_wf, 
arrow_mk_functor_lemma, 
cat-comp_wf, 
monad-op_wf, 
functor-arrow_wf, 
functor-ob_wf, 
equal_wf, 
squash_wf, 
true_wf, 
functor-arrow-comp, 
iff_weakening_equal, 
monad-equations, 
cat_comp_assoc, 
cat_comp_wf, 
cat-comp-ident2, 
ap_mk_nat_trans_lemma, 
cat-comp-ident, 
functor-arrow-id
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
hypothesis, 
independent_isectElimination, 
lambdaFormation, 
sqequalRule, 
because_Cache, 
applyEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaEquality, 
natural_numberEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[M:Monad(C)].    (adjMonad(Kl(C;M))  =  M)
Date html generated:
2017_10_05-AM-00_53_01
Last ObjectModification:
2017_07_28-AM-09_21_13
Theory : small!categories
Home
Index