Nuprl Lemma : absval_zero
∀[i:ℤ]. uiff(|i| = 0 ∈ ℤ;i = 0 ∈ ℤ)
Proof
Definitions occuring in Statement : 
absval: |i|, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
less_than: a < b, 
less_than': less_than'(a;b), 
top: Top, 
true: True, 
squash: ↓T, 
not: ¬A, 
false: False, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
absval_unfold2, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
top_wf, 
less_than_wf, 
equal-wf-base, 
int_subtype_base, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
iff_transitivity, 
assert_wf, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
assert_of_bnot, 
minus-one-mul, 
add-commutes, 
minus-one-mul-top, 
add-mul-special, 
zero-mul, 
zero-add, 
minus-zero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
because_Cache, 
lessCases, 
sqequalAxiom, 
isect_memberEquality, 
independent_pairFormation, 
voidElimination, 
voidEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_functionElimination, 
intEquality, 
applyEquality, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
impliesFunctionality, 
independent_pairEquality, 
axiomEquality, 
baseApply, 
closedConclusion, 
addEquality, 
lambdaEquality, 
minusEquality
Latex:
\mforall{}[i:\mBbbZ{}].  uiff(|i|  =  0;i  =  0)
Date html generated:
2017_04_14-AM-07_17_01
Last ObjectModification:
2017_02_27-PM-02_51_43
Theory : arithmetic
Home
Index