Nuprl Lemma : test-int-cmp-normalize

[x,y,a,b:Top].
  (if (a) < (b)
      then <if (a) < (b)  then 1  else 2, if (b) < (a)  then 1  else 2, if b=a  then 1  else 2>
      else <if (a) < (b)  then 1  else 2, if (b) < (a)  then 1  else 2, if b=a  then 1  else 2> if (a) < (b)
                                                                                                     then <1, 2, 2>
                                                                                                     else <2
                                                                                                          if (b) < (a)
                                                                                                               then 1
                                                                                                               else 2
                                                                                                          if b=a
                                                                                                               then 1
                                                                                                               else 2>)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] top: Top less: if (a) < (b)  then c  else d int_eq: if a=b  then c  else d pair: <a, b> natural_number: $n sqequal: t
Definitions unfolded in proof :  has-value: (a)↓ member: t ∈ T and: P ∧ Q uall: [x:A]. B[x] all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) uimplies: supposing a less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False prop: le: A ≤ B bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf less-iff-le add_functionality_wrt_le add-associates add-swap add-commutes le-add-cancel eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base iff_transitivity assert_wf bnot_wf not_wf iff_weakening_uiff assert_of_bnot eq_int_wf assert_of_eq_int le_antisymmetry_iff equal-wf-base has-value_wf_base is-exception_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity cut sqequalSqle divergentSqle callbyvalueLess sqequalHypSubstitution sqequalTransitivity computationStep hypothesis baseApply closedConclusion baseClosed hypothesisEquality productElimination thin introduction extract_by_obid isectElimination lambdaFormation unionElimination equalityElimination because_Cache independent_isectElimination equalityTransitivity equalitySymmetry lessCases isect_memberFormation sqequalAxiom isect_memberEquality independent_pairFormation voidElimination voidEquality natural_numberEquality imageMemberEquality imageElimination independent_functionElimination dependent_functionElimination addEquality dependent_pairFormation promote_hyp instantiate cumulativity impliesFunctionality int_eqReduceTrueSq intEquality int_eqReduceFalseSq sqleReflexivity lessExceptionCases axiomSqleEquality exceptionSqequal exceptionLess

Latex:
\mforall{}[x,y,a,b:Top].
    (if  (a)  <  (b)
            then  <if  (a)  <  (b)    then  1    else  2,  if  (b)  <  (a)    then  1    else  2,  if  b=a    then  1    else  2>
            else  <if  (a)  <  (b)    then  1    else  2,  if  (b)  <  (a)    then  1    else  2,  if  b=a    then  1    else  2> 
    \msim{}  if  (a)  <  (b)    then  ə,  2,  2>    else  ɚ,  if  (b)  <  (a)    then  1    else  2,  if  b=a    then  1    else  2>)



Date html generated: 2017_04_14-AM-07_16_34
Last ObjectModification: 2017_02_27-PM-02_51_50

Theory : arithmetic


Home Index