Nuprl Lemma : bar_induction

[T:Type]. ∀[R,A:n:ℕ ⟶ (ℕn ⟶ T) ⟶ ℙ].
  ((∀n:ℕ. ∀s:ℕn ⟶ T.  Dec(R[n;s]))
   (∀n:ℕ. ∀s:ℕn ⟶ T.  (R[n;s]  A[n;s]))
   (∀n:ℕ. ∀s:ℕn ⟶ T.  ((∀t:T. A[n 1;s++t])  A[n;s]))
   (∀n:ℕ. ∀s:ℕn ⟶ T.  ((∀alpha:ℕ ⟶ T. (↓∃m:ℕR[n m;seq-append(n;m;s;alpha)]))  A[n;s])))


Proof




Definitions occuring in Statement :  seq-adjoin: s++t seq-append: seq-append(n;m;s1;s2) int_seg: {i..j-} nat: decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] squash: T implies:  Q function: x:A ⟶ B[x] add: m natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] nat: seq-adjoin: s++t subtype_rel: A ⊆B uimplies: supposing a prop: so_lambda: λ2x.t[x] guard: {T} sq_stable: SqStable(P) squash: T so_apply: x[s] le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m true: True
Lemmas referenced :  bar_recursion_wf int_seg_wf subtype_rel-equal nat_wf seq-normalize_wf all_wf squash_wf exists_wf add_nat_wf sq_stable__le equal_wf le_wf seq-append_wf subtype_rel_dep_function int_seg_subtype_nat false_wf decidable__le not-le-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel seq-adjoin_wf decidable_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation rename introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality sqequalRule lambdaEquality applyEquality functionExtensionality because_Cache natural_numberEquality setElimination hypothesis functionEquality independent_functionElimination independent_isectElimination dependent_set_memberEquality addEquality imageMemberEquality baseClosed imageElimination equalityTransitivity equalitySymmetry dependent_functionElimination independent_pairFormation unionElimination voidElimination productElimination minusEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R,A:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  T.    Dec(R[n;s]))
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  T.    (R[n;s]  {}\mRightarrow{}  A[n;s]))
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  T.    ((\mforall{}t:T.  A[n  +  1;s++t])  {}\mRightarrow{}  A[n;s]))
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  T.    ((\mforall{}alpha:\mBbbN{}  {}\mrightarrow{}  T.  (\mdownarrow{}\mexists{}m:\mBbbN{}.  R[n  +  m;seq-append(n;m;s;alpha)]))  {}\mRightarrow{}  A[n;s])))



Date html generated: 2017_04_14-AM-07_27_16
Last ObjectModification: 2017_02_27-PM-02_56_29

Theory : bar-induction


Home Index