Nuprl Lemma : seq-normalize-normalize

[n,m:ℕ]. ∀[s:Top].  (seq-normalize(n;seq-normalize(m;s)) seq-normalize(if (n) < (m)  then n  else m;s))


Proof




Definitions occuring in Statement :  seq-normalize: seq-normalize(n;s) nat: uall: [x:A]. B[x] top: Top less: if (a) < (b)  then c  else d sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T seq-normalize: seq-normalize(n;s) nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False prop: bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b iff: ⇐⇒ Q rev_implies:  Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] cand: c∧ B le: A ≤ B has-value: (a)↓
Lemmas referenced :  lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int less_than_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base iff_transitivity assert_wf bnot_wf not_wf iff_weakening_uiff assert_of_bnot top_wf nat_wf set_subtype_base le_wf int_subtype_base not-lt-2 less-iff-le add_functionality_wrt_le add-associates base_wf add-swap add-commutes le-add-cancel equal-wf-base member_wf less_sqequal has-value_wf_base is-exception_wf bottom-sqle
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin rename extract_by_obid sqequalHypSubstitution isectElimination setElimination hypothesisEquality hypothesis lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination because_Cache lessCases sqequalAxiom isect_memberEquality independent_pairFormation voidElimination voidEquality natural_numberEquality imageMemberEquality baseClosed imageElimination independent_functionElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity impliesFunctionality applyEquality intEquality lambdaEquality baseApply closedConclusion addEquality productEquality sqequalSqle divergentSqle callbyvalueLess sqleReflexivity lessExceptionCases axiomSqleEquality exceptionSqequal

Latex:
\mforall{}[n,m:\mBbbN{}].  \mforall{}[s:Top].
    (seq-normalize(n;seq-normalize(m;s))  \msim{}  seq-normalize(if  (n)  <  (m)    then  n    else  m;s))



Date html generated: 2017_04_14-AM-07_26_42
Last ObjectModification: 2017_02_27-PM-02_56_15

Theory : bar-induction


Home Index