Nuprl Lemma : coW-equiv-iff

[A:𝕌']
  ∀B:A ⟶ Type. ∀w,w':coW(A;a.B[a]).
    (coW-equiv(a.B[a];w;w') ⇐⇒ ∀z:coW(A;a.B[a]). (coWmem(a.B[a];z;w) ⇐⇒ coWmem(a.B[a];z;w')))


Proof




Definitions occuring in Statement :  coWmem: coWmem(a.B[a];z;w) coW-equiv: coW-equiv(a.B[a];w;w') coW: coW(A;a.B[a]) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] prop: rev_implies:  Q coW-equiv: coW-equiv(a.B[a];w;w') coW-game: coW-game(a.B[a];w;w') sg-pos: Pos(g) pi1: fst(t) sg-legal1: Legal1(x;y) pi2: snd(t) sg-init: InitialPos(g) copath-length: copath-length(p) copath-nil: () subtype_rel: A ⊆B nat: decidable: Dec(P) or: P ∨ Q cand: c∧ B uimplies: supposing a not: ¬A false: False true: True sq_type: SQType(T) guard: {T} squash: T copath: copath(a.B[a];w) coPath: coPath(a.B[a];w;n) eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt bfalse: ff coWmem: coWmem(a.B[a];z;w) coW-item: coW-item(w;b) coW-dom: coW-dom(a.B[a];w) exists: x:A. B[x] ext-eq: A ≡ B satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top sg-legal2: Legal2(x;y) copathAgree: copathAgree(a.B[a];w;x;y) copath-cons: copath-cons(b;x) label: ...$L... t
Lemmas referenced :  coW-equiv_wf coWmem_wf coW_wf istype-universe coW-equiv_inversion coW-equiv-implies win2-iff coW-game_wf sg-pos_wf sg-legal1_wf sg-init_wf copath_length_nil_lemma decidable__equal_int copath-length_wf set_subtype_base le_wf int_subtype_base istype-int subtype_base_sq equal_wf squash_wf true_wf copath_wf istype-nat subtype_rel_self iff_weakening_equal pi2_wf nat_wf coPath_wf pi1_wf coW-item_wf coW-ext subtype_rel_weakening coW-equiv_weakening decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf int_formula_prop_not_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf istype-le subtract_wf itermSubtract_wf int_term_value_subtract_lemma win2_wf sg-change-init_wf coPathAgree0_lemma sg-legal2_wf simple-game_wf sg-normalize-win2 sg-normalize_wf isom-preserves-win2 copath-cons_wf copath-nil_wf coW-game-step-isom
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  independent_pairFormation Error :universeIsType,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule Error :lambdaEquality_alt,  applyEquality hypothesis Error :functionIsType,  because_Cache Error :productIsType,  instantiate cumulativity universeEquality Error :inhabitedIsType,  independent_functionElimination dependent_functionElimination productElimination Error :setIsType,  setElimination rename equalityTransitivity equalitySymmetry natural_numberEquality unionElimination Error :inlFormation_alt,  Error :equalityIstype,  intEquality independent_isectElimination baseClosed sqequalBase Error :inrFormation_alt,  voidElimination imageElimination imageMemberEquality applyLambdaEquality hypothesis_subsumption productEquality functionEquality Error :dependent_pairFormation_alt,  Error :dependent_pairEquality_alt,  Error :dependent_set_memberEquality_alt,  approximateComputation Error :isect_memberEquality_alt,  independent_pairEquality promote_hyp

Latex:
\mforall{}[A:\mBbbU{}']
    \mforall{}B:A  {}\mrightarrow{}  Type.  \mforall{}w,w':coW(A;a.B[a]).
        (coW-equiv(a.B[a];w;w')  \mLeftarrow{}{}\mRightarrow{}  \mforall{}z:coW(A;a.B[a]).  (coWmem(a.B[a];z;w)  \mLeftarrow{}{}\mRightarrow{}  coWmem(a.B[a];z;w')))



Date html generated: 2019_06_20-PM-01_11_42
Last ObjectModification: 2019_01_20-PM-01_19_45

Theory : co-recursion-2


Home Index