Nuprl Lemma : coW-equiv-iff
∀[A:𝕌']
  ∀B:A ⟶ Type. ∀w,w':coW(A;a.B[a]).
    (coW-equiv(a.B[a];w;w') ⇐⇒ ∀z:coW(A;a.B[a]). (coWmem(a.B[a];z;w) ⇐⇒ coWmem(a.B[a];z;w')))
Proof
Definitions occuring in Statement : 
coWmem: coWmem(a.B[a];z;w), 
coW-equiv: coW-equiv(a.B[a];w;w'), 
coW: coW(A;a.B[a]), 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
prop: ℙ, 
rev_implies: P ⇐ Q, 
coW-equiv: coW-equiv(a.B[a];w;w'), 
coW-game: coW-game(a.B[a];w;w'), 
sg-pos: Pos(g), 
pi1: fst(t), 
sg-legal1: Legal1(x;y), 
pi2: snd(t), 
sg-init: InitialPos(g), 
copath-length: copath-length(p), 
copath-nil: (), 
subtype_rel: A ⊆r B, 
nat: ℕ, 
decidable: Dec(P), 
or: P ∨ Q, 
cand: A c∧ B, 
uimplies: b supposing a, 
not: ¬A, 
false: False, 
true: True, 
sq_type: SQType(T), 
guard: {T}, 
squash: ↓T, 
copath: copath(a.B[a];w), 
coPath: coPath(a.B[a];w;n), 
eq_int: (i =z j), 
subtract: n - m, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
bfalse: ff, 
coWmem: coWmem(a.B[a];z;w), 
coW-item: coW-item(w;b), 
coW-dom: coW-dom(a.B[a];w), 
exists: ∃x:A. B[x], 
ext-eq: A ≡ B, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
sg-legal2: Legal2(x;y), 
copathAgree: copathAgree(a.B[a];w;x;y), 
copath-cons: copath-cons(b;x), 
label: ...$L... t
Lemmas referenced : 
coW-equiv_wf, 
coWmem_wf, 
coW_wf, 
istype-universe, 
coW-equiv_inversion, 
coW-equiv-implies, 
win2-iff, 
coW-game_wf, 
sg-pos_wf, 
sg-legal1_wf, 
sg-init_wf, 
copath_length_nil_lemma, 
decidable__equal_int, 
copath-length_wf, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
istype-int, 
subtype_base_sq, 
equal_wf, 
squash_wf, 
true_wf, 
copath_wf, 
istype-nat, 
subtype_rel_self, 
iff_weakening_equal, 
pi2_wf, 
nat_wf, 
coPath_wf, 
pi1_wf, 
coW-item_wf, 
coW-ext, 
subtype_rel_weakening, 
coW-equiv_weakening, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-le, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
win2_wf, 
sg-change-init_wf, 
coPathAgree0_lemma, 
sg-legal2_wf, 
simple-game_wf, 
sg-normalize-win2, 
sg-normalize_wf, 
isom-preserves-win2, 
copath-cons_wf, 
copath-nil_wf, 
coW-game-step-isom
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
independent_pairFormation, 
Error :universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
Error :lambdaEquality_alt, 
applyEquality, 
hypothesis, 
Error :functionIsType, 
because_Cache, 
Error :productIsType, 
instantiate, 
cumulativity, 
universeEquality, 
Error :inhabitedIsType, 
independent_functionElimination, 
dependent_functionElimination, 
productElimination, 
Error :setIsType, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
unionElimination, 
Error :inlFormation_alt, 
Error :equalityIstype, 
intEquality, 
independent_isectElimination, 
baseClosed, 
sqequalBase, 
Error :inrFormation_alt, 
voidElimination, 
imageElimination, 
imageMemberEquality, 
applyLambdaEquality, 
hypothesis_subsumption, 
productEquality, 
functionEquality, 
Error :dependent_pairFormation_alt, 
Error :dependent_pairEquality_alt, 
Error :dependent_set_memberEquality_alt, 
approximateComputation, 
Error :isect_memberEquality_alt, 
independent_pairEquality, 
promote_hyp
Latex:
\mforall{}[A:\mBbbU{}']
    \mforall{}B:A  {}\mrightarrow{}  Type.  \mforall{}w,w':coW(A;a.B[a]).
        (coW-equiv(a.B[a];w;w')  \mLeftarrow{}{}\mRightarrow{}  \mforall{}z:coW(A;a.B[a]).  (coWmem(a.B[a];z;w)  \mLeftarrow{}{}\mRightarrow{}  coWmem(a.B[a];z;w')))
Date html generated:
2019_06_20-PM-01_11_42
Last ObjectModification:
2019_01_20-PM-01_19_45
Theory : co-recursion-2
Home
Index