Nuprl Lemma : sg-normalize-win2

[g:SimpleGame]. win2(g) ≡ win2(sg-normalize(g))


Proof




Definitions occuring in Statement :  sg-normalize: sg-normalize(g) win2: win2(g) simple-game: SimpleGame ext-eq: A ≡ B uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T win2: win2(g) ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) win2strat: win2strat(g;n) squash: T true: True iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt bfalse: ff bool: 𝔹 unit: Unit it: subtract: m less_than': less_than'(a;b) le: A ≤ B cand: c∧ B play-item: moves[i] eq_int: (i =z j) strat2play: strat2play(g;n;s) sq_stable: SqStable(P) play-len: ||moves|| sg-reachable: sg-reachable(g;x;y) less_than: a < b nat_plus: + bnot: ¬bb assert: b pi2: snd(t) seq-item: s[i]
Lemmas referenced :  simple-game_wf nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than int_seg_properties int_seg_wf subtract-1-ge-0 decidable__equal_int subtract_wf subtype_base_sq set_subtype_base int_subtype_base intformnot_wf intformeq_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma decidable__le decidable__lt istype-le subtype_rel_self win2strat_wf sg-normalize_wf itermAdd_wf int_term_value_add_lemma istype-nat eq_int_wf equal-wf-base bool_wf le_wf assert_wf bnot_wf not_wf equal_wf squash_wf true_wf istype-universe eq_int_eq_true btrue_wf iff_weakening_equal btrue_neq_bfalse istype-assert subtype_rel-equal nat_wf base_wf eqtt_to_assert assert_of_eq_int strat2play_wf play-len_wf bool_cases bool_subtype_base eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot uiff_transitivity le_weakening2 le-add-cancel2 not-lt-2 le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-minus minus-add minus-one-mul-top zero-add minus-one-mul condition-implies-le less-iff-le not-ge-2 false_wf less_than_wf less_than_irreflexivity less_than_transitivity1 sg-legal1_wf lelt_wf seq-item_wf seq-len_wf equal_functionality_wrt_subtype_rel2 sg-init_wf sg-reachable_wf sg-pos_wf sequence_subtype sg-pos-normalize sg-init-normalize sg-legal1-normalize zero-mul add-mul-special not-le-2 win2strat_subtype le_weakening sq_stable__le multiply_nat_wf add_nat_wf mul-associates add-is-int-iff mul_bounds_1a le-add-cancel-alt minus-zero not-equal-2 sg-legal2-normalize sg-legal2_wf play-item_wf itermMultiply_wf int_term_value_mul_lemma strat2play_subtype strat2play-invariant strat2play-invariant-1 seq-add_wf seq-truncate_wf subtract-add-cancel nat_plus_wf nat_plus_properties mul_preserves_le lt_int_wf assert_of_lt_int bool_cases_sqequal assert-bnot seq-add-len seq-add-item seq-len-truncate seq-truncate-item mod2-2n-plus-1 subtype_rel_weakening ext-eq_inversion mul-commutes mul-distributes mul-distributes-right strat2play-reachable le_reflexive omega-shadow two-mul one-mul not-equal-implies-less sg-reachable_self mul-swap play-item-reachable sequence_wf dep-isect_wf subtype_rel_transitivity dep-isect-subtype uall_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality axiomEquality hypothesis Error :universeIsType,  extract_by_obid Error :lambdaFormation_alt,  isectElimination hypothesisEquality setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination independent_pairFormation Error :functionIsTypeImplies,  Error :inhabitedIsType,  unionElimination applyEquality instantiate because_Cache equalityTransitivity equalitySymmetry applyLambdaEquality Error :dependent_set_memberEquality_alt,  Error :productIsType,  hypothesis_subsumption addEquality baseApply closedConclusion baseClosed intEquality imageElimination universeEquality imageMemberEquality Error :equalityIstype,  Error :functionIsType,  sqequalBase dependentIntersectionElimination dependentIntersection_memberEquality functionExtensionality setEquality cumulativity equalityElimination minusEquality voidEquality dependent_set_memberEquality isect_memberEquality lambdaEquality lambdaFormation productEquality multiplyEquality impliesFunctionality promote_hyp sqequalIntensionalEquality dependent_pairFormation functionEquality isectEquality

Latex:
\mforall{}[g:SimpleGame].  win2(g)  \mequiv{}  win2(sg-normalize(g))



Date html generated: 2019_06_20-PM-00_54_31
Last ObjectModification: 2019_01_02-PM-03_39_29

Theory : co-recursion-2


Home Index