Nuprl Lemma : sg-normalize-win2
∀[g:SimpleGame]. win2(g) ≡ win2(sg-normalize(g))
Proof
Definitions occuring in Statement : 
sg-normalize: sg-normalize(g)
, 
win2: win2(g)
, 
simple-game: SimpleGame
, 
ext-eq: A ≡ B
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
win2: win2(g)
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
win2strat: win2strat(g;n)
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bfalse: ff
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
subtract: n - m
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
cand: A c∧ B
, 
play-item: moves[i]
, 
eq_int: (i =z j)
, 
strat2play: strat2play(g;n;s)
, 
sq_stable: SqStable(P)
, 
play-len: ||moves||
, 
sg-reachable: sg-reachable(g;x;y)
, 
less_than: a < b
, 
nat_plus: ℕ+
, 
bnot: ¬bb
, 
assert: ↑b
, 
pi2: snd(t)
, 
seq-item: s[i]
Lemmas referenced : 
simple-game_wf, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
int_seg_properties, 
int_seg_wf, 
subtract-1-ge-0, 
decidable__equal_int, 
subtract_wf, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
intformnot_wf, 
intformeq_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
decidable__le, 
decidable__lt, 
istype-le, 
subtype_rel_self, 
win2strat_wf, 
sg-normalize_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
istype-nat, 
eq_int_wf, 
equal-wf-base, 
bool_wf, 
le_wf, 
assert_wf, 
bnot_wf, 
not_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
eq_int_eq_true, 
btrue_wf, 
iff_weakening_equal, 
btrue_neq_bfalse, 
istype-assert, 
subtype_rel-equal, 
nat_wf, 
base_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
strat2play_wf, 
play-len_wf, 
bool_cases, 
bool_subtype_base, 
eqff_to_assert, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
uiff_transitivity, 
le_weakening2, 
le-add-cancel2, 
not-lt-2, 
le-add-cancel, 
add-zero, 
add_functionality_wrt_le, 
add-commutes, 
add-swap, 
add-associates, 
minus-minus, 
minus-add, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
condition-implies-le, 
less-iff-le, 
not-ge-2, 
false_wf, 
less_than_wf, 
less_than_irreflexivity, 
less_than_transitivity1, 
sg-legal1_wf, 
lelt_wf, 
seq-item_wf, 
seq-len_wf, 
equal_functionality_wrt_subtype_rel2, 
sg-init_wf, 
sg-reachable_wf, 
sg-pos_wf, 
sequence_subtype, 
sg-pos-normalize, 
sg-init-normalize, 
sg-legal1-normalize, 
zero-mul, 
add-mul-special, 
not-le-2, 
win2strat_subtype, 
le_weakening, 
sq_stable__le, 
multiply_nat_wf, 
add_nat_wf, 
mul-associates, 
add-is-int-iff, 
mul_bounds_1a, 
le-add-cancel-alt, 
minus-zero, 
not-equal-2, 
sg-legal2-normalize, 
sg-legal2_wf, 
play-item_wf, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
strat2play_subtype, 
strat2play-invariant, 
strat2play-invariant-1, 
seq-add_wf, 
seq-truncate_wf, 
subtract-add-cancel, 
nat_plus_wf, 
nat_plus_properties, 
mul_preserves_le, 
lt_int_wf, 
assert_of_lt_int, 
bool_cases_sqequal, 
assert-bnot, 
seq-add-len, 
seq-add-item, 
seq-len-truncate, 
seq-truncate-item, 
mod2-2n-plus-1, 
subtype_rel_weakening, 
ext-eq_inversion, 
mul-commutes, 
mul-distributes, 
mul-distributes-right, 
strat2play-reachable, 
le_reflexive, 
omega-shadow, 
two-mul, 
one-mul, 
not-equal-implies-less, 
sg-reachable_self, 
mul-swap, 
play-item-reachable, 
sequence_wf, 
dep-isect_wf, 
subtype_rel_transitivity, 
dep-isect-subtype, 
uall_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
axiomEquality, 
hypothesis, 
Error :universeIsType, 
extract_by_obid, 
Error :lambdaFormation_alt, 
isectElimination, 
hypothesisEquality, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
Error :functionIsTypeImplies, 
Error :inhabitedIsType, 
unionElimination, 
applyEquality, 
instantiate, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
Error :dependent_set_memberEquality_alt, 
Error :productIsType, 
hypothesis_subsumption, 
addEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
intEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
Error :equalityIstype, 
Error :functionIsType, 
sqequalBase, 
dependentIntersectionElimination, 
dependentIntersection_memberEquality, 
functionExtensionality, 
setEquality, 
cumulativity, 
equalityElimination, 
minusEquality, 
voidEquality, 
dependent_set_memberEquality, 
isect_memberEquality, 
lambdaEquality, 
lambdaFormation, 
productEquality, 
multiplyEquality, 
impliesFunctionality, 
promote_hyp, 
sqequalIntensionalEquality, 
dependent_pairFormation, 
functionEquality, 
isectEquality
Latex:
\mforall{}[g:SimpleGame].  win2(g)  \mequiv{}  win2(sg-normalize(g))
Date html generated:
2019_06_20-PM-00_54_31
Last ObjectModification:
2019_01_02-PM-03_39_29
Theory : co-recursion-2
Home
Index